Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{7}=\frac{1}{2}c^{-1}\times 7^{\frac{1}{2}}\left(c^{2}+74\right)
Multiply both sides of the equation by 7.
2\sqrt{7}=\frac{1}{2}c^{-1}\times 7^{\frac{1}{2}}c^{2}+37\times 7^{\frac{1}{2}}c^{-1}
Use the distributive property to multiply \frac{1}{2}c^{-1}\times 7^{\frac{1}{2}} by c^{2}+74.
2\sqrt{7}=\frac{1}{2}c^{1}\times 7^{\frac{1}{2}}+37\times 7^{\frac{1}{2}}c^{-1}
To multiply powers of the same base, add their exponents. Add -1 and 2 to get 1.
2\sqrt{7}=\frac{1}{2}c\times 7^{\frac{1}{2}}+37\times 7^{\frac{1}{2}}c^{-1}
Calculate c to the power of 1 and get c.
\frac{1}{2}c\times 7^{\frac{1}{2}}+37\times 7^{\frac{1}{2}}c^{-1}=2\sqrt{7}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}c\times 7^{\frac{1}{2}}+37\times 7^{\frac{1}{2}}c^{-1}-2\sqrt{7}=0
Subtract 2\sqrt{7} from both sides.
\frac{1}{2}\sqrt{7}c-2\sqrt{7}+37\sqrt{7}\times \frac{1}{c}=0
Reorder the terms.
\frac{1}{2}\sqrt{7}c\times 2c-2\sqrt{7}\times 2c+37\sqrt{7}\times 2\times 1=0
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2c, the least common multiple of 2,c.
\sqrt{7}cc-2\sqrt{7}\times 2c+37\sqrt{7}\times 2\times 1=0
Multiply \frac{1}{2} and 2 to get 1.
\sqrt{7}c^{2}-2\sqrt{7}\times 2c+37\sqrt{7}\times 2\times 1=0
Multiply c and c to get c^{2}.
\sqrt{7}c^{2}-4\sqrt{7}c+37\sqrt{7}\times 2\times 1=0
Multiply -2 and 2 to get -4.
\sqrt{7}c^{2}-4\sqrt{7}c+74\sqrt{7}\times 1=0
Multiply 37 and 2 to get 74.
\sqrt{7}c^{2}-4\sqrt{7}c+74\sqrt{7}=0
Multiply 74 and 1 to get 74.
\sqrt{7}c^{2}+\left(-4\sqrt{7}\right)c+74\sqrt{7}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-4\sqrt{7}\right)±\sqrt{\left(-4\sqrt{7}\right)^{2}-4\sqrt{7}\times 74\sqrt{7}}}{2\sqrt{7}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \sqrt{7} for a, -4\sqrt{7} for b, and 74\sqrt{7} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-4\sqrt{7}\right)±\sqrt{112-4\sqrt{7}\times 74\sqrt{7}}}{2\sqrt{7}}
Square -4\sqrt{7}.
c=\frac{-\left(-4\sqrt{7}\right)±\sqrt{112+\left(-4\sqrt{7}\right)\times 74\sqrt{7}}}{2\sqrt{7}}
Multiply -4 times \sqrt{7}.
c=\frac{-\left(-4\sqrt{7}\right)±\sqrt{112-2072}}{2\sqrt{7}}
Multiply -4\sqrt{7} times 74\sqrt{7}.
c=\frac{-\left(-4\sqrt{7}\right)±\sqrt{-1960}}{2\sqrt{7}}
Add 112 to -2072.
c=\frac{-\left(-4\sqrt{7}\right)±14\sqrt{10}i}{2\sqrt{7}}
Take the square root of -1960.
c=\frac{4\sqrt{7}±14\sqrt{10}i}{2\sqrt{7}}
The opposite of -4\sqrt{7} is 4\sqrt{7}.
c=\frac{4\sqrt{7}+14\sqrt{10}i}{2\sqrt{7}}
Now solve the equation c=\frac{4\sqrt{7}±14\sqrt{10}i}{2\sqrt{7}} when ± is plus. Add 4\sqrt{7} to 14i\sqrt{10}.
c=2+\sqrt{70}i
Divide 4\sqrt{7}+14i\sqrt{10} by 2\sqrt{7}.
c=\frac{-14\sqrt{10}i+4\sqrt{7}}{2\sqrt{7}}
Now solve the equation c=\frac{4\sqrt{7}±14\sqrt{10}i}{2\sqrt{7}} when ± is minus. Subtract 14i\sqrt{10} from 4\sqrt{7}.
c=-\sqrt{70}i+2
Divide 4\sqrt{7}-14i\sqrt{10} by 2\sqrt{7}.
c=2+\sqrt{70}i c=-\sqrt{70}i+2
The equation is now solved.
2\sqrt{7}=\frac{1}{2}c^{-1}\times 7^{\frac{1}{2}}\left(c^{2}+74\right)
Multiply both sides of the equation by 7.
2\sqrt{7}=\frac{1}{2}c^{-1}\times 7^{\frac{1}{2}}c^{2}+37\times 7^{\frac{1}{2}}c^{-1}
Use the distributive property to multiply \frac{1}{2}c^{-1}\times 7^{\frac{1}{2}} by c^{2}+74.
2\sqrt{7}=\frac{1}{2}c^{1}\times 7^{\frac{1}{2}}+37\times 7^{\frac{1}{2}}c^{-1}
To multiply powers of the same base, add their exponents. Add -1 and 2 to get 1.
2\sqrt{7}=\frac{1}{2}c\times 7^{\frac{1}{2}}+37\times 7^{\frac{1}{2}}c^{-1}
Calculate c to the power of 1 and get c.
\frac{1}{2}c\times 7^{\frac{1}{2}}+37\times 7^{\frac{1}{2}}c^{-1}=2\sqrt{7}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}\sqrt{7}c+37\sqrt{7}\times \frac{1}{c}=2\sqrt{7}
Reorder the terms.
\frac{1}{2}\sqrt{7}c\times 2c+37\sqrt{7}\times 2\times 1=2\sqrt{7}\times 2c
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2c, the least common multiple of 2,c.
\sqrt{7}cc+37\sqrt{7}\times 2\times 1=2\sqrt{7}\times 2c
Multiply \frac{1}{2} and 2 to get 1.
\sqrt{7}c^{2}+37\sqrt{7}\times 2\times 1=2\sqrt{7}\times 2c
Multiply c and c to get c^{2}.
\sqrt{7}c^{2}+74\sqrt{7}\times 1=2\sqrt{7}\times 2c
Multiply 37 and 2 to get 74.
\sqrt{7}c^{2}+74\sqrt{7}=2\sqrt{7}\times 2c
Multiply 74 and 1 to get 74.
\sqrt{7}c^{2}+74\sqrt{7}=4\sqrt{7}c
Multiply 2 and 2 to get 4.
\sqrt{7}c^{2}+74\sqrt{7}-4\sqrt{7}c=0
Subtract 4\sqrt{7}c from both sides.
\sqrt{7}c^{2}+\left(-4\sqrt{7}\right)c+74\sqrt{7}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\sqrt{7}c^{2}+\left(-4\sqrt{7}\right)c+74\sqrt{7}-74\sqrt{7}=-74\sqrt{7}
Subtract 74\sqrt{7} from both sides of the equation.
\sqrt{7}c^{2}+\left(-4\sqrt{7}\right)c=-74\sqrt{7}
Subtracting 74\sqrt{7} from itself leaves 0.
\frac{\sqrt{7}c^{2}+\left(-4\sqrt{7}\right)c}{\sqrt{7}}=-\frac{74\sqrt{7}}{\sqrt{7}}
Divide both sides by \sqrt{7}.
c^{2}+\left(-\frac{4\sqrt{7}}{\sqrt{7}}\right)c=-\frac{74\sqrt{7}}{\sqrt{7}}
Dividing by \sqrt{7} undoes the multiplication by \sqrt{7}.
c^{2}-4c=-\frac{74\sqrt{7}}{\sqrt{7}}
Divide -4\sqrt{7} by \sqrt{7}.
c^{2}-4c=-74
Divide -74\sqrt{7} by \sqrt{7}.
c^{2}-4c+\left(-2\right)^{2}=-74+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}-4c+4=-74+4
Square -2.
c^{2}-4c+4=-70
Add -74 to 4.
\left(c-2\right)^{2}=-70
Factor c^{2}-4c+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-2\right)^{2}}=\sqrt{-70}
Take the square root of both sides of the equation.
c-2=\sqrt{70}i c-2=-\sqrt{70}i
Simplify.
c=2+\sqrt{70}i c=-\sqrt{70}i+2
Add 2 to both sides of the equation.