Evaluate
3\sqrt{30}-16\approx 0.431676725
Factor
3 \sqrt{30} - 16 = 0.431676725
Share
Copied to clipboard
\frac{2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}-\frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}
Rationalize the denominator of \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{5}.
\frac{2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{5}\right)^{2}}-\frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}
Consider \left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)}{6-5}-\frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}
Square \sqrt{6}. Square \sqrt{5}.
\frac{2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)}{1}-\frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}
Subtract 5 from 6 to get 1.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}
Anything divided by one gives itself.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{\left(\sqrt{15}+3\sqrt{2}\right)\left(\sqrt{15}-3\sqrt{2}\right)}
Rationalize the denominator of \frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}} by multiplying numerator and denominator by \sqrt{15}-3\sqrt{2}.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{\left(\sqrt{15}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Consider \left(\sqrt{15}+3\sqrt{2}\right)\left(\sqrt{15}-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{15-\left(3\sqrt{2}\right)^{2}}
The square of \sqrt{15} is 15.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{15-3^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{15-9\left(\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{15-9\times 2}
The square of \sqrt{2} is 2.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{15-18}
Multiply 9 and 2 to get 18.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{-3}
Subtract 18 from 15 to get -3.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)-\left(-\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)\right)
Cancel out -3 and -3.
2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)+\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)
The opposite of -\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right) is \sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right).
2\sqrt{5}\sqrt{6}-2\left(\sqrt{5}\right)^{2}+\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)
Use the distributive property to multiply 2\sqrt{5} by \sqrt{6}-\sqrt{5}.
2\sqrt{30}-2\left(\sqrt{5}\right)^{2}+\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
2\sqrt{30}-2\times 5+\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)
The square of \sqrt{5} is 5.
2\sqrt{30}-10+\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)
Multiply -2 and 5 to get -10.
2\sqrt{30}-10+\sqrt{2}\sqrt{15}-3\left(\sqrt{2}\right)^{2}
Use the distributive property to multiply \sqrt{2} by \sqrt{15}-3\sqrt{2}.
2\sqrt{30}-10+\sqrt{30}-3\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{15}, multiply the numbers under the square root.
2\sqrt{30}-10+\sqrt{30}-3\times 2
The square of \sqrt{2} is 2.
2\sqrt{30}-10+\sqrt{30}-6
Multiply -3 and 2 to get -6.
3\sqrt{30}-10-6
Combine 2\sqrt{30} and \sqrt{30} to get 3\sqrt{30}.
3\sqrt{30}-16
Subtract 6 from -10 to get -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}