Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\sqrt{435}=\left(-\frac{1}{8}x+\frac{1}{2}\right)\left(y-3\right)
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -x+4.
2\sqrt{435}=-\frac{1}{8}xy+\frac{3}{8}x+\frac{1}{2}y-\frac{3}{2}
Use the distributive property to multiply -\frac{1}{8}x+\frac{1}{2} by y-3.
-\frac{1}{8}xy+\frac{3}{8}x+\frac{1}{2}y-\frac{3}{2}=2\sqrt{435}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{8}xy+\frac{3}{8}x-\frac{3}{2}=2\sqrt{435}-\frac{1}{2}y
Subtract \frac{1}{2}y from both sides.
-\frac{1}{8}xy+\frac{3}{8}x=2\sqrt{435}-\frac{1}{2}y+\frac{3}{2}
Add \frac{3}{2} to both sides.
\left(-\frac{1}{8}y+\frac{3}{8}\right)x=2\sqrt{435}-\frac{1}{2}y+\frac{3}{2}
Combine all terms containing x.
\frac{3-y}{8}x=-\frac{y}{2}+2\sqrt{435}+\frac{3}{2}
The equation is in standard form.
\frac{8\times \frac{3-y}{8}x}{3-y}=\frac{8\left(-\frac{y}{2}+2\sqrt{435}+\frac{3}{2}\right)}{3-y}
Divide both sides by -\frac{1}{8}y+\frac{3}{8}.
x=\frac{8\left(-\frac{y}{2}+2\sqrt{435}+\frac{3}{2}\right)}{3-y}
Dividing by -\frac{1}{8}y+\frac{3}{8} undoes the multiplication by -\frac{1}{8}y+\frac{3}{8}.
x=4+\frac{16\sqrt{435}}{3-y}
Divide 2\sqrt{435}-\frac{y}{2}+\frac{3}{2} by -\frac{1}{8}y+\frac{3}{8}.
x=4+\frac{16\sqrt{435}}{3-y}\text{, }x\neq 4
Variable x cannot be equal to 4.
2\sqrt{435}=\left(-\frac{1}{8}x+\frac{1}{2}\right)\left(y-3\right)
Multiply both sides of the equation by -x+4.
2\sqrt{435}=-\frac{1}{8}xy+\frac{3}{8}x+\frac{1}{2}y-\frac{3}{2}
Use the distributive property to multiply -\frac{1}{8}x+\frac{1}{2} by y-3.
-\frac{1}{8}xy+\frac{3}{8}x+\frac{1}{2}y-\frac{3}{2}=2\sqrt{435}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{8}xy+\frac{1}{2}y-\frac{3}{2}=2\sqrt{435}-\frac{3}{8}x
Subtract \frac{3}{8}x from both sides.
-\frac{1}{8}xy+\frac{1}{2}y=2\sqrt{435}-\frac{3}{8}x+\frac{3}{2}
Add \frac{3}{2} to both sides.
\left(-\frac{1}{8}x+\frac{1}{2}\right)y=2\sqrt{435}-\frac{3}{8}x+\frac{3}{2}
Combine all terms containing y.
\left(-\frac{x}{8}+\frac{1}{2}\right)y=-\frac{3x}{8}+2\sqrt{435}+\frac{3}{2}
The equation is in standard form.
\frac{\left(-\frac{x}{8}+\frac{1}{2}\right)y}{-\frac{x}{8}+\frac{1}{2}}=\frac{-\frac{3x}{8}+2\sqrt{435}+\frac{3}{2}}{-\frac{x}{8}+\frac{1}{2}}
Divide both sides by -\frac{1}{8}x+\frac{1}{2}.
y=\frac{-\frac{3x}{8}+2\sqrt{435}+\frac{3}{2}}{-\frac{x}{8}+\frac{1}{2}}
Dividing by -\frac{1}{8}x+\frac{1}{2} undoes the multiplication by -\frac{1}{8}x+\frac{1}{2}.
y=\frac{-3x+16\sqrt{435}+12}{4-x}
Divide 2\sqrt{435}-\frac{3x}{8}+\frac{3}{2} by -\frac{1}{8}x+\frac{1}{2}.