Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{3}
Rationalize the denominator of \frac{2\sqrt{30}-2\sqrt{2}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{2\times 2}-\sqrt{3}
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{4}-\sqrt{3}
Multiply 2 and 2 to get 4.
\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{4}-\frac{4\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{4}{4}.
\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}-4\sqrt{3}}{4}
Since \frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{4} and \frac{4\sqrt{3}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{15}-4-4\sqrt{3}}{4}
Do the multiplications in \left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}-4\sqrt{3}.
\sqrt{15}-1-\sqrt{3}
Divide each term of 4\sqrt{15}-4-4\sqrt{3} by 4 to get \sqrt{15}-1-\sqrt{3}.