Evaluate
\sqrt{15}-\sqrt{3}-1\approx 1.140932539
Share
Copied to clipboard
\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{3}
Rationalize the denominator of \frac{2\sqrt{30}-2\sqrt{2}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{2\times 2}-\sqrt{3}
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{4}-\sqrt{3}
Multiply 2 and 2 to get 4.
\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{4}-\frac{4\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{4}{4}.
\frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}-4\sqrt{3}}{4}
Since \frac{\left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}}{4} and \frac{4\sqrt{3}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{15}-4-4\sqrt{3}}{4}
Do the multiplications in \left(2\sqrt{30}-2\sqrt{2}\right)\sqrt{2}-4\sqrt{3}.
\sqrt{15}-1-\sqrt{3}
Divide each term of 4\sqrt{15}-4-4\sqrt{3} by 4 to get \sqrt{15}-1-\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}