Evaluate
\frac{3\sqrt{3}-7}{2}\approx -0.901923789
Factor
\frac{3 \sqrt{3} - 7}{2} = -0.901923788646684
Share
Copied to clipboard
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{\left(2\sqrt{3}+6\right)\left(2\sqrt{3}-6\right)}
Rationalize the denominator of \frac{2\sqrt{3}-12}{2\sqrt{3}+6} by multiplying numerator and denominator by 2\sqrt{3}-6.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{\left(2\sqrt{3}\right)^{2}-6^{2}}
Consider \left(2\sqrt{3}+6\right)\left(2\sqrt{3}-6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{2^{2}\left(\sqrt{3}\right)^{2}-6^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{4\left(\sqrt{3}\right)^{2}-6^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{4\times 3-6^{2}}
The square of \sqrt{3} is 3.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{12-6^{2}}
Multiply 4 and 3 to get 12.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{12-36}
Calculate 6 to the power of 2 and get 36.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{-24}
Subtract 36 from 12 to get -24.
\frac{4\left(\sqrt{3}\right)^{2}-12\sqrt{3}-24\sqrt{3}+72}{-24}
Apply the distributive property by multiplying each term of 2\sqrt{3}-12 by each term of 2\sqrt{3}-6.
\frac{4\times 3-12\sqrt{3}-24\sqrt{3}+72}{-24}
The square of \sqrt{3} is 3.
\frac{12-12\sqrt{3}-24\sqrt{3}+72}{-24}
Multiply 4 and 3 to get 12.
\frac{12-36\sqrt{3}+72}{-24}
Combine -12\sqrt{3} and -24\sqrt{3} to get -36\sqrt{3}.
\frac{84-36\sqrt{3}}{-24}
Add 12 and 72 to get 84.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}