Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{\left(2\sqrt{3}+6\right)\left(2\sqrt{3}-6\right)}
Rationalize the denominator of \frac{2\sqrt{3}-12}{2\sqrt{3}+6} by multiplying numerator and denominator by 2\sqrt{3}-6.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{\left(2\sqrt{3}\right)^{2}-6^{2}}
Consider \left(2\sqrt{3}+6\right)\left(2\sqrt{3}-6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{2^{2}\left(\sqrt{3}\right)^{2}-6^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{4\left(\sqrt{3}\right)^{2}-6^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{4\times 3-6^{2}}
The square of \sqrt{3} is 3.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{12-6^{2}}
Multiply 4 and 3 to get 12.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{12-36}
Calculate 6 to the power of 2 and get 36.
\frac{\left(2\sqrt{3}-12\right)\left(2\sqrt{3}-6\right)}{-24}
Subtract 36 from 12 to get -24.
\frac{4\left(\sqrt{3}\right)^{2}-12\sqrt{3}-24\sqrt{3}+72}{-24}
Apply the distributive property by multiplying each term of 2\sqrt{3}-12 by each term of 2\sqrt{3}-6.
\frac{4\times 3-12\sqrt{3}-24\sqrt{3}+72}{-24}
The square of \sqrt{3} is 3.
\frac{12-12\sqrt{3}-24\sqrt{3}+72}{-24}
Multiply 4 and 3 to get 12.
\frac{12-36\sqrt{3}+72}{-24}
Combine -12\sqrt{3} and -24\sqrt{3} to get -36\sqrt{3}.
\frac{84-36\sqrt{3}}{-24}
Add 12 and 72 to get 84.