Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{3}\left(3+2\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}
Rationalize the denominator of \frac{2\sqrt{3}}{3-2\sqrt{2}} by multiplying numerator and denominator by 3+2\sqrt{2}.
\frac{2\sqrt{3}\left(3+2\sqrt{2}\right)}{3^{2}-\left(-2\sqrt{2}\right)^{2}}
Consider \left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(3+2\sqrt{2}\right)}{9-\left(-2\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{2\sqrt{3}\left(3+2\sqrt{2}\right)}{9-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-2\sqrt{2}\right)^{2}.
\frac{2\sqrt{3}\left(3+2\sqrt{2}\right)}{9-4\left(\sqrt{2}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{2\sqrt{3}\left(3+2\sqrt{2}\right)}{9-4\times 2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{3}\left(3+2\sqrt{2}\right)}{9-8}
Multiply 4 and 2 to get 8.
\frac{2\sqrt{3}\left(3+2\sqrt{2}\right)}{1}
Subtract 8 from 9 to get 1.
2\sqrt{3}\left(3+2\sqrt{2}\right)
Anything divided by one gives itself.
6\sqrt{3}+4\sqrt{3}\sqrt{2}
Use the distributive property to multiply 2\sqrt{3} by 3+2\sqrt{2}.
6\sqrt{3}+4\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.