Evaluate
\sqrt{3}+i\approx 1.732050808+i
Real Part
\sqrt{3} = 1.732050808
Share
Copied to clipboard
\frac{\left(2\sqrt{2}+2i\sqrt{6}\right)\left(i\sqrt{2}-\sqrt{6}\right)}{\left(i\sqrt{2}+\sqrt{6}\right)\left(i\sqrt{2}-\sqrt{6}\right)}
Rationalize the denominator of \frac{2\sqrt{2}+2i\sqrt{6}}{i\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by i\sqrt{2}-\sqrt{6}.
\frac{\left(2\sqrt{2}+2i\sqrt{6}\right)\left(i\sqrt{2}-\sqrt{6}\right)}{\left(i\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(i\sqrt{2}+\sqrt{6}\right)\left(i\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{2}+2i\sqrt{6}\right)\left(i\sqrt{2}-\sqrt{6}\right)}{i^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Expand \left(i\sqrt{2}\right)^{2}.
\frac{\left(2\sqrt{2}+2i\sqrt{6}\right)\left(i\sqrt{2}-\sqrt{6}\right)}{-\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Calculate i to the power of 2 and get -1.
\frac{\left(2\sqrt{2}+2i\sqrt{6}\right)\left(i\sqrt{2}-\sqrt{6}\right)}{-2-\left(\sqrt{6}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{2}+2i\sqrt{6}\right)\left(i\sqrt{2}-\sqrt{6}\right)}{-2-6}
The square of \sqrt{6} is 6.
\frac{\left(2\sqrt{2}+2i\sqrt{6}\right)\left(i\sqrt{2}-\sqrt{6}\right)}{-8}
Subtract 6 from -2 to get -8.
\frac{2i\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}-2\sqrt{2}\sqrt{6}-2i\left(\sqrt{6}\right)^{2}}{-8}
Apply the distributive property by multiplying each term of 2\sqrt{2}+2i\sqrt{6} by each term of i\sqrt{2}-\sqrt{6}.
\frac{2i\times 2-2\sqrt{2}\sqrt{6}-2\sqrt{2}\sqrt{6}-2i\left(\sqrt{6}\right)^{2}}{-8}
The square of \sqrt{2} is 2.
\frac{4i-2\sqrt{2}\sqrt{6}-2\sqrt{2}\sqrt{6}-2i\left(\sqrt{6}\right)^{2}}{-8}
Multiply 2i and 2 to get 4i.
\frac{4i-2\sqrt{2}\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{6}-2i\left(\sqrt{6}\right)^{2}}{-8}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{4i-2\times 2\sqrt{3}-2\sqrt{2}\sqrt{6}-2i\left(\sqrt{6}\right)^{2}}{-8}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4i-4\sqrt{3}-2\sqrt{2}\sqrt{6}-2i\left(\sqrt{6}\right)^{2}}{-8}
Multiply -2 and 2 to get -4.
\frac{4i-4\sqrt{3}-2\sqrt{2}\sqrt{2}\sqrt{3}-2i\left(\sqrt{6}\right)^{2}}{-8}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{4i-4\sqrt{3}-2\times 2\sqrt{3}-2i\left(\sqrt{6}\right)^{2}}{-8}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4i-4\sqrt{3}-4\sqrt{3}-2i\left(\sqrt{6}\right)^{2}}{-8}
Multiply -2 and 2 to get -4.
\frac{4i-8\sqrt{3}-2i\left(\sqrt{6}\right)^{2}}{-8}
Combine -4\sqrt{3} and -4\sqrt{3} to get -8\sqrt{3}.
\frac{4i-8\sqrt{3}-2i\times 6}{-8}
The square of \sqrt{6} is 6.
\frac{4i-8\sqrt{3}-12i}{-8}
Multiply -2i and 6 to get -12i.
\frac{-8i-8\sqrt{3}}{-8}
Subtract 12i from 4i to get -8i.
\frac{8i+8\sqrt{3}}{8}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}