Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{10}\left(-8+4\sqrt{3}\right)}{\left(-8-4\sqrt{3}\right)\left(-8+4\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{10}}{-8-4\sqrt{3}} by multiplying numerator and denominator by -8+4\sqrt{3}.
\frac{2\sqrt{10}\left(-8+4\sqrt{3}\right)}{\left(-8\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Consider \left(-8-4\sqrt{3}\right)\left(-8+4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{10}\left(-8+4\sqrt{3}\right)}{64-\left(-4\sqrt{3}\right)^{2}}
Calculate -8 to the power of 2 and get 64.
\frac{2\sqrt{10}\left(-8+4\sqrt{3}\right)}{64-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-4\sqrt{3}\right)^{2}.
\frac{2\sqrt{10}\left(-8+4\sqrt{3}\right)}{64-16\left(\sqrt{3}\right)^{2}}
Calculate -4 to the power of 2 and get 16.
\frac{2\sqrt{10}\left(-8+4\sqrt{3}\right)}{64-16\times 3}
The square of \sqrt{3} is 3.
\frac{2\sqrt{10}\left(-8+4\sqrt{3}\right)}{64-48}
Multiply 16 and 3 to get 48.
\frac{2\sqrt{10}\left(-8+4\sqrt{3}\right)}{16}
Subtract 48 from 64 to get 16.
\frac{1}{8}\sqrt{10}\left(-8+4\sqrt{3}\right)
Divide 2\sqrt{10}\left(-8+4\sqrt{3}\right) by 16 to get \frac{1}{8}\sqrt{10}\left(-8+4\sqrt{3}\right).
\frac{1}{8}\sqrt{10}\left(-8\right)+\frac{1}{8}\sqrt{10}\times 4\sqrt{3}
Use the distributive property to multiply \frac{1}{8}\sqrt{10} by -8+4\sqrt{3}.
\frac{-8}{8}\sqrt{10}+\frac{1}{8}\sqrt{10}\times 4\sqrt{3}
Multiply \frac{1}{8} and -8 to get \frac{-8}{8}.
-\sqrt{10}+\frac{1}{8}\sqrt{10}\times 4\sqrt{3}
Divide -8 by 8 to get -1.
-\sqrt{10}+\frac{4}{8}\sqrt{10}\sqrt{3}
Multiply \frac{1}{8} and 4 to get \frac{4}{8}.
-\sqrt{10}+\frac{1}{2}\sqrt{10}\sqrt{3}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
-\sqrt{10}+\frac{1}{2}\sqrt{30}
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.