Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\times \frac{1\sqrt{2}\sqrt{3}\sqrt{2}}{4}}{\sqrt{3}+1}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2\times \frac{1\times 2\sqrt{3}}{4}}{\sqrt{3}+1}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2\times \frac{2\sqrt{3}}{4}}{\sqrt{3}+1}
Multiply 1 and 2 to get 2.
\frac{2\times \frac{1}{2}\sqrt{3}}{\sqrt{3}+1}
Divide 2\sqrt{3} by 4 to get \frac{1}{2}\sqrt{3}.
\frac{\sqrt{3}}{\sqrt{3}+1}
Cancel out 2 and 2.
\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
\frac{\left(\sqrt{3}\right)^{2}-\sqrt{3}}{2}
Use the distributive property to multiply \sqrt{3} by \sqrt{3}-1.
\frac{3-\sqrt{3}}{2}
The square of \sqrt{3} is 3.