Evaluate
\frac{3-\sqrt{3}}{2}\approx 0.633974596
Share
Copied to clipboard
\frac{2\times \frac{1\sqrt{2}\sqrt{3}\sqrt{2}}{4}}{\sqrt{3}+1}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2\times \frac{1\times 2\sqrt{3}}{4}}{\sqrt{3}+1}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2\times \frac{2\sqrt{3}}{4}}{\sqrt{3}+1}
Multiply 1 and 2 to get 2.
\frac{2\times \frac{1}{2}\sqrt{3}}{\sqrt{3}+1}
Divide 2\sqrt{3} by 4 to get \frac{1}{2}\sqrt{3}.
\frac{\sqrt{3}}{\sqrt{3}+1}
Cancel out 2 and 2.
\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
\frac{\left(\sqrt{3}\right)^{2}-\sqrt{3}}{2}
Use the distributive property to multiply \sqrt{3} by \sqrt{3}-1.
\frac{3-\sqrt{3}}{2}
The square of \sqrt{3} is 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}