\frac { 2 \% - 9 \% } { ( - 4 \% ) - 2 \% } = \frac { x } { y }
Solve for x
x=\frac{7y}{6}
y\neq 0
Solve for y
y=\frac{6x}{7}
x\neq 0
Graph
Share
Copied to clipboard
-\frac{50}{3}y\left(\frac{2}{100}-\frac{9}{100}\right)=x
Multiply both sides of the equation by y.
-\frac{50}{3}y\left(\frac{1}{50}-\frac{9}{100}\right)=x
Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
-\frac{50}{3}y\left(-\frac{7}{100}\right)=x
Subtract \frac{9}{100} from \frac{1}{50} to get -\frac{7}{100}.
\frac{7}{6}y=x
Multiply -\frac{50}{3} and -\frac{7}{100} to get \frac{7}{6}.
x=\frac{7}{6}y
Swap sides so that all variable terms are on the left hand side.
-\frac{50}{3}y\left(\frac{2}{100}-\frac{9}{100}\right)=x
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
-\frac{50}{3}y\left(\frac{1}{50}-\frac{9}{100}\right)=x
Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
-\frac{50}{3}y\left(-\frac{7}{100}\right)=x
Subtract \frac{9}{100} from \frac{1}{50} to get -\frac{7}{100}.
\frac{7}{6}y=x
Multiply -\frac{50}{3} and -\frac{7}{100} to get \frac{7}{6}.
\frac{\frac{7}{6}y}{\frac{7}{6}}=\frac{x}{\frac{7}{6}}
Divide both sides of the equation by \frac{7}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{x}{\frac{7}{6}}
Dividing by \frac{7}{6} undoes the multiplication by \frac{7}{6}.
y=\frac{6x}{7}
Divide x by \frac{7}{6} by multiplying x by the reciprocal of \frac{7}{6}.
y=\frac{6x}{7}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}