Evaluate
\frac{21}{7812500000000000}=2.688 \cdot 10^{-15}
Factor
\frac{3 \cdot 7}{2 ^ {11} \cdot 5 ^ {18}} = 2.6879999999999997 \times 10^{-15}
Share
Copied to clipboard
\frac{2^{3}\times 7\times 3\times 10^{-5}\times 8\times 10^{-12}}{1\times 5}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{2^{3}\times 7\times 3\times 10^{-17}\times 8}{1\times 5}
To multiply powers of the same base, add their exponents. Add -5 and -12 to get -17.
\frac{8\times 7\times 3\times 10^{-17}\times 8}{1\times 5}
Calculate 2 to the power of 3 and get 8.
\frac{56\times 3\times 10^{-17}\times 8}{1\times 5}
Multiply 8 and 7 to get 56.
\frac{168\times 10^{-17}\times 8}{1\times 5}
Multiply 56 and 3 to get 168.
\frac{168\times \frac{1}{100000000000000000}\times 8}{1\times 5}
Calculate 10 to the power of -17 and get \frac{1}{100000000000000000}.
\frac{\frac{21}{12500000000000000}\times 8}{1\times 5}
Multiply 168 and \frac{1}{100000000000000000} to get \frac{21}{12500000000000000}.
\frac{\frac{21}{1562500000000000}}{1\times 5}
Multiply \frac{21}{12500000000000000} and 8 to get \frac{21}{1562500000000000}.
\frac{\frac{21}{1562500000000000}}{5}
Multiply 1 and 5 to get 5.
\frac{21}{1562500000000000\times 5}
Express \frac{\frac{21}{1562500000000000}}{5} as a single fraction.
\frac{21}{7812500000000000}
Multiply 1562500000000000 and 5 to get 7812500000000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}