Skip to main content
Solve for R
Tick mark Image

Similar Problems from Web Search

Share

-\frac{1}{6}R\left(6^{\frac{1}{2}}-3\times 2^{\frac{1}{2}}\right)\left(2+6\right)=2\sqrt{6}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2R.
\left(-\frac{1}{6}R\times 6^{\frac{1}{2}}+\frac{1}{2}R\times 2^{\frac{1}{2}}\right)\left(2+6\right)=2\sqrt{6}
Use the distributive property to multiply -\frac{1}{6}R by 6^{\frac{1}{2}}-3\times 2^{\frac{1}{2}}.
\left(-\frac{1}{6}R\times 6^{\frac{1}{2}}+\frac{1}{2}R\times 2^{\frac{1}{2}}\right)\times 8=2\sqrt{6}
Add 2 and 6 to get 8.
-\frac{4}{3}R\times 6^{\frac{1}{2}}+4R\times 2^{\frac{1}{2}}=2\sqrt{6}
Use the distributive property to multiply -\frac{1}{6}R\times 6^{\frac{1}{2}}+\frac{1}{2}R\times 2^{\frac{1}{2}} by 8.
4\sqrt{2}R-\frac{4}{3}\sqrt{6}R=2\sqrt{6}
Reorder the terms.
\left(4\sqrt{2}-\frac{4}{3}\sqrt{6}\right)R=2\sqrt{6}
Combine all terms containing R.
\left(-\frac{4\sqrt{6}}{3}+4\sqrt{2}\right)R=2\sqrt{6}
The equation is in standard form.
\frac{\left(-\frac{4\sqrt{6}}{3}+4\sqrt{2}\right)R}{-\frac{4\sqrt{6}}{3}+4\sqrt{2}}=\frac{2\sqrt{6}}{-\frac{4\sqrt{6}}{3}+4\sqrt{2}}
Divide both sides by 4\sqrt{2}-\frac{4}{3}\sqrt{6}.
R=\frac{2\sqrt{6}}{-\frac{4\sqrt{6}}{3}+4\sqrt{2}}
Dividing by 4\sqrt{2}-\frac{4}{3}\sqrt{6} undoes the multiplication by 4\sqrt{2}-\frac{4}{3}\sqrt{6}.
R=\frac{3\sqrt{3}+3}{4}
Divide 2\sqrt{6} by 4\sqrt{2}-\frac{4}{3}\sqrt{6}.