Solve for R
R = \frac{3 {(\sqrt{3} + 1)}}{4} \approx 2.049038106
Share
Copied to clipboard
-\frac{1}{6}R\left(6^{\frac{1}{2}}-3\times 2^{\frac{1}{2}}\right)\left(2+6\right)=2\sqrt{6}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2R.
\left(-\frac{1}{6}R\times 6^{\frac{1}{2}}+\frac{1}{2}R\times 2^{\frac{1}{2}}\right)\left(2+6\right)=2\sqrt{6}
Use the distributive property to multiply -\frac{1}{6}R by 6^{\frac{1}{2}}-3\times 2^{\frac{1}{2}}.
\left(-\frac{1}{6}R\times 6^{\frac{1}{2}}+\frac{1}{2}R\times 2^{\frac{1}{2}}\right)\times 8=2\sqrt{6}
Add 2 and 6 to get 8.
-\frac{4}{3}R\times 6^{\frac{1}{2}}+4R\times 2^{\frac{1}{2}}=2\sqrt{6}
Use the distributive property to multiply -\frac{1}{6}R\times 6^{\frac{1}{2}}+\frac{1}{2}R\times 2^{\frac{1}{2}} by 8.
4\sqrt{2}R-\frac{4}{3}\sqrt{6}R=2\sqrt{6}
Reorder the terms.
\left(4\sqrt{2}-\frac{4}{3}\sqrt{6}\right)R=2\sqrt{6}
Combine all terms containing R.
\left(-\frac{4\sqrt{6}}{3}+4\sqrt{2}\right)R=2\sqrt{6}
The equation is in standard form.
\frac{\left(-\frac{4\sqrt{6}}{3}+4\sqrt{2}\right)R}{-\frac{4\sqrt{6}}{3}+4\sqrt{2}}=\frac{2\sqrt{6}}{-\frac{4\sqrt{6}}{3}+4\sqrt{2}}
Divide both sides by 4\sqrt{2}-\frac{4}{3}\sqrt{6}.
R=\frac{2\sqrt{6}}{-\frac{4\sqrt{6}}{3}+4\sqrt{2}}
Dividing by 4\sqrt{2}-\frac{4}{3}\sqrt{6} undoes the multiplication by 4\sqrt{2}-\frac{4}{3}\sqrt{6}.
R=\frac{3\sqrt{3}+3}{4}
Divide 2\sqrt{6} by 4\sqrt{2}-\frac{4}{3}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}