Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+5i\right)\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7+3i.
\frac{\left(2+5i\right)\left(7+3i\right)}{7^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+5i\right)\left(7+3i\right)}{58}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3i^{2}}{58}
Multiply complex numbers 2+5i and 7+3i like you multiply binomials.
\frac{2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3\left(-1\right)}{58}
By definition, i^{2} is -1.
\frac{14+6i+35i-15}{58}
Do the multiplications in 2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3\left(-1\right).
\frac{14-15+\left(6+35\right)i}{58}
Combine the real and imaginary parts in 14+6i+35i-15.
\frac{-1+41i}{58}
Do the additions in 14-15+\left(6+35\right)i.
-\frac{1}{58}+\frac{41}{58}i
Divide -1+41i by 58 to get -\frac{1}{58}+\frac{41}{58}i.
Re(\frac{\left(2+5i\right)\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)})
Multiply both numerator and denominator of \frac{2+5i}{7-3i} by the complex conjugate of the denominator, 7+3i.
Re(\frac{\left(2+5i\right)\left(7+3i\right)}{7^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+5i\right)\left(7+3i\right)}{58})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3i^{2}}{58})
Multiply complex numbers 2+5i and 7+3i like you multiply binomials.
Re(\frac{2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3\left(-1\right)}{58})
By definition, i^{2} is -1.
Re(\frac{14+6i+35i-15}{58})
Do the multiplications in 2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3\left(-1\right).
Re(\frac{14-15+\left(6+35\right)i}{58})
Combine the real and imaginary parts in 14+6i+35i-15.
Re(\frac{-1+41i}{58})
Do the additions in 14-15+\left(6+35\right)i.
Re(-\frac{1}{58}+\frac{41}{58}i)
Divide -1+41i by 58 to get -\frac{1}{58}+\frac{41}{58}i.
-\frac{1}{58}
The real part of -\frac{1}{58}+\frac{41}{58}i is -\frac{1}{58}.