Evaluate
-\frac{1}{58}+\frac{41}{58}i\approx -0.017241379+0.706896552i
Real Part
-\frac{1}{58} = -0.017241379310344827
Share
Copied to clipboard
\frac{\left(2+5i\right)\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7+3i.
\frac{\left(2+5i\right)\left(7+3i\right)}{7^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+5i\right)\left(7+3i\right)}{58}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3i^{2}}{58}
Multiply complex numbers 2+5i and 7+3i like you multiply binomials.
\frac{2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3\left(-1\right)}{58}
By definition, i^{2} is -1.
\frac{14+6i+35i-15}{58}
Do the multiplications in 2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3\left(-1\right).
\frac{14-15+\left(6+35\right)i}{58}
Combine the real and imaginary parts in 14+6i+35i-15.
\frac{-1+41i}{58}
Do the additions in 14-15+\left(6+35\right)i.
-\frac{1}{58}+\frac{41}{58}i
Divide -1+41i by 58 to get -\frac{1}{58}+\frac{41}{58}i.
Re(\frac{\left(2+5i\right)\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)})
Multiply both numerator and denominator of \frac{2+5i}{7-3i} by the complex conjugate of the denominator, 7+3i.
Re(\frac{\left(2+5i\right)\left(7+3i\right)}{7^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+5i\right)\left(7+3i\right)}{58})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3i^{2}}{58})
Multiply complex numbers 2+5i and 7+3i like you multiply binomials.
Re(\frac{2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3\left(-1\right)}{58})
By definition, i^{2} is -1.
Re(\frac{14+6i+35i-15}{58})
Do the multiplications in 2\times 7+2\times \left(3i\right)+5i\times 7+5\times 3\left(-1\right).
Re(\frac{14-15+\left(6+35\right)i}{58})
Combine the real and imaginary parts in 14+6i+35i-15.
Re(\frac{-1+41i}{58})
Do the additions in 14-15+\left(6+35\right)i.
Re(-\frac{1}{58}+\frac{41}{58}i)
Divide -1+41i by 58 to get -\frac{1}{58}+\frac{41}{58}i.
-\frac{1}{58}
The real part of -\frac{1}{58}+\frac{41}{58}i is -\frac{1}{58}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}