Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+5i\right)i}{3i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{\left(2+5i\right)i}{-3}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2i+5i^{2}}{-3}
Multiply 2+5i times i.
\frac{2i+5\left(-1\right)}{-3}
By definition, i^{2} is -1.
\frac{-5+2i}{-3}
Do the multiplications in 2i+5\left(-1\right). Reorder the terms.
\frac{5}{3}-\frac{2}{3}i
Divide -5+2i by -3 to get \frac{5}{3}-\frac{2}{3}i.
Re(\frac{\left(2+5i\right)i}{3i^{2}})
Multiply both numerator and denominator of \frac{2+5i}{3i} by imaginary unit i.
Re(\frac{\left(2+5i\right)i}{-3})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2i+5i^{2}}{-3})
Multiply 2+5i times i.
Re(\frac{2i+5\left(-1\right)}{-3})
By definition, i^{2} is -1.
Re(\frac{-5+2i}{-3})
Do the multiplications in 2i+5\left(-1\right). Reorder the terms.
Re(\frac{5}{3}-\frac{2}{3}i)
Divide -5+2i by -3 to get \frac{5}{3}-\frac{2}{3}i.
\frac{5}{3}
The real part of \frac{5}{3}-\frac{2}{3}i is \frac{5}{3}.