Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+3i\right)\left(5-7i\right)}{\left(5+7i\right)\left(5-7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-7i.
\frac{\left(2+3i\right)\left(5-7i\right)}{5^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+3i\right)\left(5-7i\right)}{74}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 5+2\times \left(-7i\right)+3i\times 5+3\left(-7\right)i^{2}}{74}
Multiply complex numbers 2+3i and 5-7i like you multiply binomials.
\frac{2\times 5+2\times \left(-7i\right)+3i\times 5+3\left(-7\right)\left(-1\right)}{74}
By definition, i^{2} is -1.
\frac{10-14i+15i+21}{74}
Do the multiplications in 2\times 5+2\times \left(-7i\right)+3i\times 5+3\left(-7\right)\left(-1\right).
\frac{10+21+\left(-14+15\right)i}{74}
Combine the real and imaginary parts in 10-14i+15i+21.
\frac{31+i}{74}
Do the additions in 10+21+\left(-14+15\right)i.
\frac{31}{74}+\frac{1}{74}i
Divide 31+i by 74 to get \frac{31}{74}+\frac{1}{74}i.
Re(\frac{\left(2+3i\right)\left(5-7i\right)}{\left(5+7i\right)\left(5-7i\right)})
Multiply both numerator and denominator of \frac{2+3i}{5+7i} by the complex conjugate of the denominator, 5-7i.
Re(\frac{\left(2+3i\right)\left(5-7i\right)}{5^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+3i\right)\left(5-7i\right)}{74})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 5+2\times \left(-7i\right)+3i\times 5+3\left(-7\right)i^{2}}{74})
Multiply complex numbers 2+3i and 5-7i like you multiply binomials.
Re(\frac{2\times 5+2\times \left(-7i\right)+3i\times 5+3\left(-7\right)\left(-1\right)}{74})
By definition, i^{2} is -1.
Re(\frac{10-14i+15i+21}{74})
Do the multiplications in 2\times 5+2\times \left(-7i\right)+3i\times 5+3\left(-7\right)\left(-1\right).
Re(\frac{10+21+\left(-14+15\right)i}{74})
Combine the real and imaginary parts in 10-14i+15i+21.
Re(\frac{31+i}{74})
Do the additions in 10+21+\left(-14+15\right)i.
Re(\frac{31}{74}+\frac{1}{74}i)
Divide 31+i by 74 to get \frac{31}{74}+\frac{1}{74}i.
\frac{31}{74}
The real part of \frac{31}{74}+\frac{1}{74}i is \frac{31}{74}.