Evaluate
\frac{6}{5}+\frac{2}{5}i=1.2+0.4i
Real Part
\frac{6}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\frac{2+2i}{2+i}\times 1
Divide 2-1 by 2-1 to get 1.
\frac{\left(2+2i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}\times 1
Multiply both numerator and denominator of \frac{2+2i}{2+i} by the complex conjugate of the denominator, 2-i.
\frac{\left(2+2i\right)\left(2-i\right)}{2^{2}-i^{2}}\times 1
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+2i\right)\left(2-i\right)}{5}\times 1
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 2+2\left(-i\right)+2i\times 2+2\left(-1\right)i^{2}}{5}\times 1
Multiply complex numbers 2+2i and 2-i like you multiply binomials.
\frac{2\times 2+2\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right)}{5}\times 1
By definition, i^{2} is -1.
\frac{4-2i+4i+2}{5}\times 1
Do the multiplications in 2\times 2+2\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right).
\frac{4+2+\left(-2+4\right)i}{5}\times 1
Combine the real and imaginary parts in 4-2i+4i+2.
\frac{6+2i}{5}\times 1
Do the additions in 4+2+\left(-2+4\right)i.
\left(\frac{6}{5}+\frac{2}{5}i\right)\times 1
Divide 6+2i by 5 to get \frac{6}{5}+\frac{2}{5}i.
\frac{6}{5}+\frac{2}{5}i
Multiply \frac{6}{5}+\frac{2}{5}i and 1 to get \frac{6}{5}+\frac{2}{5}i.
Re(\frac{2+2i}{2+i}\times 1)
Divide 2-1 by 2-1 to get 1.
Re(\frac{\left(2+2i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}\times 1)
Multiply both numerator and denominator of \frac{2+2i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{\left(2+2i\right)\left(2-i\right)}{2^{2}-i^{2}}\times 1)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+2i\right)\left(2-i\right)}{5}\times 1)
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 2+2\left(-i\right)+2i\times 2+2\left(-1\right)i^{2}}{5}\times 1)
Multiply complex numbers 2+2i and 2-i like you multiply binomials.
Re(\frac{2\times 2+2\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right)}{5}\times 1)
By definition, i^{2} is -1.
Re(\frac{4-2i+4i+2}{5}\times 1)
Do the multiplications in 2\times 2+2\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right).
Re(\frac{4+2+\left(-2+4\right)i}{5}\times 1)
Combine the real and imaginary parts in 4-2i+4i+2.
Re(\frac{6+2i}{5}\times 1)
Do the additions in 4+2+\left(-2+4\right)i.
Re(\left(\frac{6}{5}+\frac{2}{5}i\right)\times 1)
Divide 6+2i by 5 to get \frac{6}{5}+\frac{2}{5}i.
Re(\frac{6}{5}+\frac{2}{5}i)
Multiply \frac{6}{5}+\frac{2}{5}i and 1 to get \frac{6}{5}+\frac{2}{5}i.
\frac{6}{5}
The real part of \frac{6}{5}+\frac{2}{5}i is \frac{6}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}