Evaluate
\frac{2\left(c^{2}+1\right)}{1-c^{2}}
Expand
-\frac{2\left(c^{2}+1\right)}{c^{2}-1}
Share
Copied to clipboard
\frac{2+2c^{4}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}+\frac{4c^{2}}{1+c^{4}}+\frac{8c^{6}}{1-c^{8}}
Factor 1-c^{4}.
\frac{\left(2+2c^{4}\right)\left(c^{4}+1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{4c^{2}\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{1-c^{8}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right) and 1+c^{4} is \left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right). Multiply \frac{2+2c^{4}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)} times \frac{c^{4}+1}{c^{4}+1}. Multiply \frac{4c^{2}}{1+c^{4}} times \frac{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}.
\frac{\left(2+2c^{4}\right)\left(c^{4}+1\right)+4c^{2}\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{1-c^{8}}
Since \frac{\left(2+2c^{4}\right)\left(c^{4}+1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)} and \frac{4c^{2}\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)} have the same denominator, add them by adding their numerators.
\frac{2c^{4}+2+2c^{8}+2c^{4}-4c^{6}-4c^{4}-4c^{5}-4c^{3}+4c^{5}+4c^{3}+4c^{4}+4c^{2}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{1-c^{8}}
Do the multiplications in \left(2+2c^{4}\right)\left(c^{4}+1\right)+4c^{2}\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right).
\frac{4c^{4}+2c^{8}+2-4c^{6}+4c^{2}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{1-c^{8}}
Combine like terms in 2c^{4}+2+2c^{8}+2c^{4}-4c^{6}-4c^{4}-4c^{5}-4c^{3}+4c^{5}+4c^{3}+4c^{4}+4c^{2}.
\frac{4c^{4}+2c^{8}+2-4c^{6}+4c^{2}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(-c^{4}-1\right)}
Factor 1-c^{8}.
\frac{-\left(4c^{4}+2c^{8}+2-4c^{6}+4c^{2}\right)}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}+\frac{-8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right) and \left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(-c^{4}-1\right) is \left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right). Multiply \frac{4c^{4}+2c^{8}+2-4c^{6}+4c^{2}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)} times \frac{-1}{-1}. Multiply \frac{8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(-c^{4}-1\right)} times \frac{-1}{-1}.
\frac{-\left(4c^{4}+2c^{8}+2-4c^{6}+4c^{2}\right)-8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Since \frac{-\left(4c^{4}+2c^{8}+2-4c^{6}+4c^{2}\right)}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)} and \frac{-8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)} have the same denominator, add them by adding their numerators.
\frac{-4c^{4}-2c^{8}-2+4c^{6}-4c^{2}-8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Do the multiplications in -\left(4c^{4}+2c^{8}+2-4c^{6}+4c^{2}\right)-8c^{6}.
\frac{-4c^{4}-2-2c^{8}-4c^{6}-4c^{2}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Combine like terms in -4c^{4}-2c^{8}-2+4c^{6}-4c^{2}-8c^{6}.
\frac{2\left(-c^{2}-1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Factor the expressions that are not already factored in \frac{-4c^{4}-2-2c^{8}-4c^{6}-4c^{2}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}.
\frac{-2\left(c^{2}+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Extract the negative sign in -1-c^{2}.
\frac{-2\left(c^{2}+1\right)}{\left(c-1\right)\left(c+1\right)}
Cancel out \left(c^{2}+1\right)\left(c^{4}+1\right) in both numerator and denominator.
\frac{-2\left(c^{2}+1\right)}{c^{2}-1}
Expand \left(c-1\right)\left(c+1\right).
\frac{-2c^{2}-2}{c^{2}-1}
Use the distributive property to multiply -2 by c^{2}+1.
\frac{2+2c^{4}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}+\frac{4c^{2}}{1+c^{4}}+\frac{8c^{6}}{1-c^{8}}
Factor 1-c^{4}.
\frac{\left(2+2c^{4}\right)\left(c^{4}+1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{4c^{2}\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{1-c^{8}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right) and 1+c^{4} is \left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right). Multiply \frac{2+2c^{4}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)} times \frac{c^{4}+1}{c^{4}+1}. Multiply \frac{4c^{2}}{1+c^{4}} times \frac{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}.
\frac{\left(2+2c^{4}\right)\left(c^{4}+1\right)+4c^{2}\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{1-c^{8}}
Since \frac{\left(2+2c^{4}\right)\left(c^{4}+1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)} and \frac{4c^{2}\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)} have the same denominator, add them by adding their numerators.
\frac{2c^{4}+2+2c^{8}+2c^{4}-4c^{6}-4c^{4}-4c^{5}-4c^{3}+4c^{5}+4c^{3}+4c^{4}+4c^{2}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{1-c^{8}}
Do the multiplications in \left(2+2c^{4}\right)\left(c^{4}+1\right)+4c^{2}\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right).
\frac{4c^{4}+2c^{8}+2-4c^{6}+4c^{2}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{1-c^{8}}
Combine like terms in 2c^{4}+2+2c^{8}+2c^{4}-4c^{6}-4c^{4}-4c^{5}-4c^{3}+4c^{5}+4c^{3}+4c^{4}+4c^{2}.
\frac{4c^{4}+2c^{8}+2-4c^{6}+4c^{2}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)}+\frac{8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(-c^{4}-1\right)}
Factor 1-c^{8}.
\frac{-\left(4c^{4}+2c^{8}+2-4c^{6}+4c^{2}\right)}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}+\frac{-8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right) and \left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(-c^{4}-1\right) is \left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right). Multiply \frac{4c^{4}+2c^{8}+2-4c^{6}+4c^{2}}{\left(c-1\right)\left(c+1\right)\left(-c^{2}-1\right)\left(c^{4}+1\right)} times \frac{-1}{-1}. Multiply \frac{8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(-c^{4}-1\right)} times \frac{-1}{-1}.
\frac{-\left(4c^{4}+2c^{8}+2-4c^{6}+4c^{2}\right)-8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Since \frac{-\left(4c^{4}+2c^{8}+2-4c^{6}+4c^{2}\right)}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)} and \frac{-8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)} have the same denominator, add them by adding their numerators.
\frac{-4c^{4}-2c^{8}-2+4c^{6}-4c^{2}-8c^{6}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Do the multiplications in -\left(4c^{4}+2c^{8}+2-4c^{6}+4c^{2}\right)-8c^{6}.
\frac{-4c^{4}-2-2c^{8}-4c^{6}-4c^{2}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Combine like terms in -4c^{4}-2c^{8}-2+4c^{6}-4c^{2}-8c^{6}.
\frac{2\left(-c^{2}-1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Factor the expressions that are not already factored in \frac{-4c^{4}-2-2c^{8}-4c^{6}-4c^{2}}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}.
\frac{-2\left(c^{2}+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}{\left(c-1\right)\left(c+1\right)\left(c^{2}+1\right)\left(c^{4}+1\right)}
Extract the negative sign in -1-c^{2}.
\frac{-2\left(c^{2}+1\right)}{\left(c-1\right)\left(c+1\right)}
Cancel out \left(c^{2}+1\right)\left(c^{4}+1\right) in both numerator and denominator.
\frac{-2\left(c^{2}+1\right)}{c^{2}-1}
Expand \left(c-1\right)\left(c+1\right).
\frac{-2c^{2}-2}{c^{2}-1}
Use the distributive property to multiply -2 by c^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}