Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{2+\sqrt{6}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\left(2+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\left(2+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{2\sqrt{5}-2\sqrt{3}+\sqrt{6}\sqrt{5}-\sqrt{6}\sqrt{3}}{2}
Apply the distributive property by multiplying each term of 2+\sqrt{6} by each term of \sqrt{5}-\sqrt{3}.
\frac{2\sqrt{5}-2\sqrt{3}+\sqrt{30}-\sqrt{6}\sqrt{3}}{2}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\frac{2\sqrt{5}-2\sqrt{3}+\sqrt{30}-\sqrt{3}\sqrt{2}\sqrt{3}}{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{2\sqrt{5}-2\sqrt{3}+\sqrt{30}-3\sqrt{2}}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.