Evaluate
-8\sqrt{5}-18\approx -35.88854382
Factor
2 {(-4 \sqrt{5} - 9)} = -35.88854382
Share
Copied to clipboard
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+\frac{2+\sqrt{5}}{2-\sqrt{5}}
Rationalize the denominator of \frac{2+\sqrt{5}}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+\frac{2+\sqrt{5}}{2-\sqrt{5}}
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}+\frac{2+\sqrt{5}}{2-\sqrt{5}}
Square 2. Square \sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}+\frac{2+\sqrt{5}}{2-\sqrt{5}}
Subtract 5 from 4 to get -1.
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}+\frac{2+\sqrt{5}}{2-\sqrt{5}}
Multiply 2+\sqrt{5} and 2+\sqrt{5} to get \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}+\frac{2+\sqrt{5}}{2-\sqrt{5}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+5}{-1}+\frac{2+\sqrt{5}}{2-\sqrt{5}}
The square of \sqrt{5} is 5.
\frac{9+4\sqrt{5}}{-1}+\frac{2+\sqrt{5}}{2-\sqrt{5}}
Add 4 and 5 to get 9.
-9-4\sqrt{5}+\frac{2+\sqrt{5}}{2-\sqrt{5}}
Anything divided by -1 gives its opposite. To find the opposite of 9+4\sqrt{5}, find the opposite of each term.
-9-4\sqrt{5}+\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}
Rationalize the denominator of \frac{2+\sqrt{5}}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
-9-4\sqrt{5}+\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9-4\sqrt{5}+\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}
Square 2. Square \sqrt{5}.
-9-4\sqrt{5}+\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}
Subtract 5 from 4 to get -1.
-9-4\sqrt{5}+\frac{\left(2+\sqrt{5}\right)^{2}}{-1}
Multiply 2+\sqrt{5} and 2+\sqrt{5} to get \left(2+\sqrt{5}\right)^{2}.
-9-4\sqrt{5}+\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{5}\right)^{2}.
-9-4\sqrt{5}+\frac{4+4\sqrt{5}+5}{-1}
The square of \sqrt{5} is 5.
-9-4\sqrt{5}+\frac{9+4\sqrt{5}}{-1}
Add 4 and 5 to get 9.
-9-4\sqrt{5}-9-4\sqrt{5}
Anything divided by -1 gives its opposite. To find the opposite of 9+4\sqrt{5}, find the opposite of each term.
-18-4\sqrt{5}-4\sqrt{5}
Subtract 9 from -9 to get -18.
-18-8\sqrt{5}
Combine -4\sqrt{5} and -4\sqrt{5} to get -8\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}