Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
Rationalize the denominator of \frac{2+\sqrt{5}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
\frac{\left(2+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}-\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{2}\right)}{3-2}-\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
Square \sqrt{3}. Square \sqrt{2}.
\frac{\left(2+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{2}\right)}{1}-\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
Subtract 2 from 3 to get 1.
\left(2+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
Anything divided by one gives itself.
2\sqrt{3}-2\sqrt{2}+\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{2}-\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
Use the distributive property to multiply 2+\sqrt{5} by \sqrt{3}-\sqrt{2}.
2\sqrt{3}-2\sqrt{2}+\sqrt{15}-\sqrt{5}\sqrt{2}-\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{3}-2\sqrt{2}+\sqrt{15}-\sqrt{10}-\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
2\sqrt{3}-2\sqrt{2}+\sqrt{15}-\sqrt{10}-\left(\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
Use the distributive property to multiply \sqrt{5} by \sqrt{3}-\sqrt{2}.
2\sqrt{3}-2\sqrt{2}+\sqrt{15}-\sqrt{10}-\left(\sqrt{15}-\sqrt{5}\sqrt{2}\right)+\left(1-\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{3}-2\sqrt{2}+\sqrt{15}-\sqrt{10}-\left(\sqrt{15}-\sqrt{10}\right)+\left(1-\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
2\sqrt{3}-2\sqrt{2}+\sqrt{15}-\sqrt{10}-\sqrt{15}+\sqrt{10}+\left(1-\sqrt{2}\right)^{2}
To find the opposite of \sqrt{15}-\sqrt{10}, find the opposite of each term.
2\sqrt{3}-2\sqrt{2}-\sqrt{10}+\sqrt{10}+\left(1-\sqrt{2}\right)^{2}
Combine \sqrt{15} and -\sqrt{15} to get 0.
2\sqrt{3}-2\sqrt{2}+\left(1-\sqrt{2}\right)^{2}
Combine -\sqrt{10} and \sqrt{10} to get 0.
2\sqrt{3}-2\sqrt{2}+1-2\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2}\right)^{2}.
2\sqrt{3}-2\sqrt{2}+1-2\sqrt{2}+2
The square of \sqrt{2} is 2.
2\sqrt{3}-2\sqrt{2}+3-2\sqrt{2}
Add 1 and 2 to get 3.
2\sqrt{3}-4\sqrt{2}+3
Combine -2\sqrt{2} and -2\sqrt{2} to get -4\sqrt{2}.