Evaluate
\frac{4\left(\sqrt{15}+2\sqrt{5}+4\sqrt{3}+8\right)}{11}\approx 8.463026375
Share
Copied to clipboard
4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}
Rationalize the denominator of \frac{2+\sqrt{3}}{4-\sqrt{5}} by multiplying numerator and denominator by 4+\sqrt{5}.
4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{16-5}
Square 4. Square \sqrt{5}.
4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{11}
Subtract 5 from 16 to get 11.
\frac{4\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{11}
Express 4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{11} as a single fraction.
\frac{\left(8+4\sqrt{3}\right)\left(4+\sqrt{5}\right)}{11}
Use the distributive property to multiply 4 by 2+\sqrt{3}.
\frac{32+8\sqrt{5}+16\sqrt{3}+4\sqrt{3}\sqrt{5}}{11}
Apply the distributive property by multiplying each term of 8+4\sqrt{3} by each term of 4+\sqrt{5}.
\frac{32+8\sqrt{5}+16\sqrt{3}+4\sqrt{15}}{11}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}