Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}
Rationalize the denominator of \frac{2+\sqrt{3}}{4-\sqrt{5}} by multiplying numerator and denominator by 4+\sqrt{5}.
4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{16-5}
Square 4. Square \sqrt{5}.
4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{11}
Subtract 5 from 16 to get 11.
\frac{4\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{11}
Express 4\times \frac{\left(2+\sqrt{3}\right)\left(4+\sqrt{5}\right)}{11} as a single fraction.
\frac{\left(8+4\sqrt{3}\right)\left(4+\sqrt{5}\right)}{11}
Use the distributive property to multiply 4 by 2+\sqrt{3}.
\frac{32+8\sqrt{5}+16\sqrt{3}+4\sqrt{3}\sqrt{5}}{11}
Apply the distributive property by multiplying each term of 8+4\sqrt{3} by each term of 4+\sqrt{5}.
\frac{32+8\sqrt{5}+16\sqrt{3}+4\sqrt{15}}{11}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.