Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}+\frac{2-\sqrt{3}}{3-\sqrt{3}}
Rationalize the denominator of \frac{2+\sqrt{3}}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{9-3}+\frac{2-\sqrt{3}}{3-\sqrt{3}}
Square 3. Square \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{6}+\frac{2-\sqrt{3}}{3-\sqrt{3}}
Subtract 3 from 9 to get 6.
\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{6}+\frac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}
Rationalize the denominator of \frac{2-\sqrt{3}}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{6}+\frac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{6}+\frac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{6}+\frac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}
Since \frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{6} and \frac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6} have the same denominator, add them by adding their numerators.
\frac{6-2\sqrt{3}+3\sqrt{3}-3+6+2\sqrt{3}-3\sqrt{3}-3}{6}
Do the multiplications in \left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right).
\frac{6}{6}
Do the calculations in 6-2\sqrt{3}+3\sqrt{3}-3+6+2\sqrt{3}-3\sqrt{3}-3.
1
Divide 6 by 6 to get 1.