Evaluate
\frac{10\sqrt{3}}{3}+8\approx 13.773502692
Factor
\frac{2 {(5 \sqrt{3} + 12)}}{3} = 13.773502691896256
Share
Copied to clipboard
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Rationalize the denominator of \frac{2+\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Square 2. Square \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)^{2}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Multiply 2+\sqrt{3} and 2+\sqrt{3} to get \left(2+\sqrt{3}\right)^{2}.
\left(2+\sqrt{3}\right)^{2}-2\times \frac{\left(2-\sqrt{3}\right)\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2-\sqrt{3}}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(2+\sqrt{3}\right)^{2}-2\times \frac{\left(2-\sqrt{3}\right)\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\left(2+\sqrt{3}\right)^{2}-2\times \frac{\left(2-\sqrt{3}\right)\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\sqrt{3}}{3}
Cancel out 6, the greatest common factor in 2 and 6.
\left(2+\sqrt{3}\right)^{2}-\frac{2\sqrt{3}-\left(\sqrt{3}\right)^{2}}{3}
Use the distributive property to multiply 2-\sqrt{3} by \sqrt{3}.
\left(2+\sqrt{3}\right)^{2}-\frac{2\sqrt{3}-3}{3}
The square of \sqrt{3} is 3.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\frac{2\sqrt{3}-3}{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3-\frac{2\sqrt{3}-3}{3}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\frac{2\sqrt{3}-3}{3}
Add 4 and 3 to get 7.
\frac{3\left(7+4\sqrt{3}\right)}{3}-\frac{2\sqrt{3}-3}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7+4\sqrt{3} times \frac{3}{3}.
\frac{3\left(7+4\sqrt{3}\right)-\left(2\sqrt{3}-3\right)}{3}
Since \frac{3\left(7+4\sqrt{3}\right)}{3} and \frac{2\sqrt{3}-3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{21+12\sqrt{3}-2\sqrt{3}+3}{3}
Do the multiplications in 3\left(7+4\sqrt{3}\right)-\left(2\sqrt{3}-3\right).
\frac{24+10\sqrt{3}}{3}
Do the calculations in 21+12\sqrt{3}-2\sqrt{3}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}