Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Rationalize the denominator of \frac{2+\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Square 2. Square \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)^{2}-2\times \frac{2-\sqrt{3}}{2\sqrt{3}}
Multiply 2+\sqrt{3} and 2+\sqrt{3} to get \left(2+\sqrt{3}\right)^{2}.
\left(2+\sqrt{3}\right)^{2}-2\times \frac{\left(2-\sqrt{3}\right)\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2-\sqrt{3}}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(2+\sqrt{3}\right)^{2}-2\times \frac{\left(2-\sqrt{3}\right)\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\left(2+\sqrt{3}\right)^{2}-2\times \frac{\left(2-\sqrt{3}\right)\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\sqrt{3}}{3}
Cancel out 6, the greatest common factor in 2 and 6.
\left(2+\sqrt{3}\right)^{2}-\frac{2\sqrt{3}-\left(\sqrt{3}\right)^{2}}{3}
Use the distributive property to multiply 2-\sqrt{3} by \sqrt{3}.
\left(2+\sqrt{3}\right)^{2}-\frac{2\sqrt{3}-3}{3}
The square of \sqrt{3} is 3.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\frac{2\sqrt{3}-3}{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3-\frac{2\sqrt{3}-3}{3}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\frac{2\sqrt{3}-3}{3}
Add 4 and 3 to get 7.
\frac{3\left(7+4\sqrt{3}\right)}{3}-\frac{2\sqrt{3}-3}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7+4\sqrt{3} times \frac{3}{3}.
\frac{3\left(7+4\sqrt{3}\right)-\left(2\sqrt{3}-3\right)}{3}
Since \frac{3\left(7+4\sqrt{3}\right)}{3} and \frac{2\sqrt{3}-3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{21+12\sqrt{3}-2\sqrt{3}+3}{3}
Do the multiplications in 3\left(7+4\sqrt{3}\right)-\left(2\sqrt{3}-3\right).
\frac{24+10\sqrt{3}}{3}
Do the calculations in 21+12\sqrt{3}-2\sqrt{3}+3.