Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1986\left(\sqrt{1997}+1\right)}{\left(\sqrt{1997}-1\right)\left(\sqrt{1997}+1\right)}
Rationalize the denominator of \frac{1986}{\sqrt{1997}-1} by multiplying numerator and denominator by \sqrt{1997}+1.
\frac{1986\left(\sqrt{1997}+1\right)}{\left(\sqrt{1997}\right)^{2}-1^{2}}
Consider \left(\sqrt{1997}-1\right)\left(\sqrt{1997}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1986\left(\sqrt{1997}+1\right)}{1997-1}
Square \sqrt{1997}. Square 1.
\frac{1986\left(\sqrt{1997}+1\right)}{1996}
Subtract 1 from 1997 to get 1996.
\frac{993}{998}\left(\sqrt{1997}+1\right)
Divide 1986\left(\sqrt{1997}+1\right) by 1996 to get \frac{993}{998}\left(\sqrt{1997}+1\right).
\frac{993}{998}\sqrt{1997}+\frac{993}{998}
Use the distributive property to multiply \frac{993}{998} by \sqrt{1997}+1.