Skip to main content
Solve for x_j
Tick mark Image

Similar Problems from Web Search

Share

\left(x_{j}+1\right)^{2}\times 1875+\left(x_{j}+1\right)\times 625-3125=0
Variable x_{j} cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x_{j}+1\right)^{3}, the least common multiple of 1+x_{j},\left(1+x_{j}\right)^{2},\left(1+x_{j}\right)^{3}.
\left(x_{j}^{2}+2x_{j}+1\right)\times 1875+\left(x_{j}+1\right)\times 625-3125=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x_{j}+1\right)^{2}.
1875x_{j}^{2}+3750x_{j}+1875+\left(x_{j}+1\right)\times 625-3125=0
Use the distributive property to multiply x_{j}^{2}+2x_{j}+1 by 1875.
1875x_{j}^{2}+3750x_{j}+1875+625x_{j}+625-3125=0
Use the distributive property to multiply x_{j}+1 by 625.
1875x_{j}^{2}+4375x_{j}+1875+625-3125=0
Combine 3750x_{j} and 625x_{j} to get 4375x_{j}.
1875x_{j}^{2}+4375x_{j}+2500-3125=0
Add 1875 and 625 to get 2500.
1875x_{j}^{2}+4375x_{j}-625=0
Subtract 3125 from 2500 to get -625.
x_{j}=\frac{-4375±\sqrt{4375^{2}-4\times 1875\left(-625\right)}}{2\times 1875}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1875 for a, 4375 for b, and -625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x_{j}=\frac{-4375±\sqrt{19140625-4\times 1875\left(-625\right)}}{2\times 1875}
Square 4375.
x_{j}=\frac{-4375±\sqrt{19140625-7500\left(-625\right)}}{2\times 1875}
Multiply -4 times 1875.
x_{j}=\frac{-4375±\sqrt{19140625+4687500}}{2\times 1875}
Multiply -7500 times -625.
x_{j}=\frac{-4375±\sqrt{23828125}}{2\times 1875}
Add 19140625 to 4687500.
x_{j}=\frac{-4375±625\sqrt{61}}{2\times 1875}
Take the square root of 23828125.
x_{j}=\frac{-4375±625\sqrt{61}}{3750}
Multiply 2 times 1875.
x_{j}=\frac{625\sqrt{61}-4375}{3750}
Now solve the equation x_{j}=\frac{-4375±625\sqrt{61}}{3750} when ± is plus. Add -4375 to 625\sqrt{61}.
x_{j}=\frac{\sqrt{61}-7}{6}
Divide -4375+625\sqrt{61} by 3750.
x_{j}=\frac{-625\sqrt{61}-4375}{3750}
Now solve the equation x_{j}=\frac{-4375±625\sqrt{61}}{3750} when ± is minus. Subtract 625\sqrt{61} from -4375.
x_{j}=\frac{-\sqrt{61}-7}{6}
Divide -4375-625\sqrt{61} by 3750.
x_{j}=\frac{\sqrt{61}-7}{6} x_{j}=\frac{-\sqrt{61}-7}{6}
The equation is now solved.
\left(x_{j}+1\right)^{2}\times 1875+\left(x_{j}+1\right)\times 625-3125=0
Variable x_{j} cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x_{j}+1\right)^{3}, the least common multiple of 1+x_{j},\left(1+x_{j}\right)^{2},\left(1+x_{j}\right)^{3}.
\left(x_{j}^{2}+2x_{j}+1\right)\times 1875+\left(x_{j}+1\right)\times 625-3125=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x_{j}+1\right)^{2}.
1875x_{j}^{2}+3750x_{j}+1875+\left(x_{j}+1\right)\times 625-3125=0
Use the distributive property to multiply x_{j}^{2}+2x_{j}+1 by 1875.
1875x_{j}^{2}+3750x_{j}+1875+625x_{j}+625-3125=0
Use the distributive property to multiply x_{j}+1 by 625.
1875x_{j}^{2}+4375x_{j}+1875+625-3125=0
Combine 3750x_{j} and 625x_{j} to get 4375x_{j}.
1875x_{j}^{2}+4375x_{j}+2500-3125=0
Add 1875 and 625 to get 2500.
1875x_{j}^{2}+4375x_{j}-625=0
Subtract 3125 from 2500 to get -625.
1875x_{j}^{2}+4375x_{j}=625
Add 625 to both sides. Anything plus zero gives itself.
\frac{1875x_{j}^{2}+4375x_{j}}{1875}=\frac{625}{1875}
Divide both sides by 1875.
x_{j}^{2}+\frac{4375}{1875}x_{j}=\frac{625}{1875}
Dividing by 1875 undoes the multiplication by 1875.
x_{j}^{2}+\frac{7}{3}x_{j}=\frac{625}{1875}
Reduce the fraction \frac{4375}{1875} to lowest terms by extracting and canceling out 625.
x_{j}^{2}+\frac{7}{3}x_{j}=\frac{1}{3}
Reduce the fraction \frac{625}{1875} to lowest terms by extracting and canceling out 625.
x_{j}^{2}+\frac{7}{3}x_{j}+\left(\frac{7}{6}\right)^{2}=\frac{1}{3}+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x_{j}^{2}+\frac{7}{3}x_{j}+\frac{49}{36}=\frac{1}{3}+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x_{j}^{2}+\frac{7}{3}x_{j}+\frac{49}{36}=\frac{61}{36}
Add \frac{1}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x_{j}+\frac{7}{6}\right)^{2}=\frac{61}{36}
Factor x_{j}^{2}+\frac{7}{3}x_{j}+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x_{j}+\frac{7}{6}\right)^{2}}=\sqrt{\frac{61}{36}}
Take the square root of both sides of the equation.
x_{j}+\frac{7}{6}=\frac{\sqrt{61}}{6} x_{j}+\frac{7}{6}=-\frac{\sqrt{61}}{6}
Simplify.
x_{j}=\frac{\sqrt{61}-7}{6} x_{j}=\frac{-\sqrt{61}-7}{6}
Subtract \frac{7}{6} from both sides of the equation.