Evaluate
\frac{362}{165}\approx 2.193939394
Factor
\frac{2 \cdot 181}{3 \cdot 5 \cdot 11} = 2\frac{32}{165} = 2.193939393939394
Share
Copied to clipboard
\begin{array}{l}\phantom{825)}\phantom{1}\\825\overline{)1810}\\\end{array}
Use the 1^{st} digit 1 from dividend 1810
\begin{array}{l}\phantom{825)}0\phantom{2}\\825\overline{)1810}\\\end{array}
Since 1 is less than 825, use the next digit 8 from dividend 1810 and add 0 to the quotient
\begin{array}{l}\phantom{825)}0\phantom{3}\\825\overline{)1810}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1810
\begin{array}{l}\phantom{825)}00\phantom{4}\\825\overline{)1810}\\\end{array}
Since 18 is less than 825, use the next digit 1 from dividend 1810 and add 0 to the quotient
\begin{array}{l}\phantom{825)}00\phantom{5}\\825\overline{)1810}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1810
\begin{array}{l}\phantom{825)}000\phantom{6}\\825\overline{)1810}\\\end{array}
Since 181 is less than 825, use the next digit 0 from dividend 1810 and add 0 to the quotient
\begin{array}{l}\phantom{825)}000\phantom{7}\\825\overline{)1810}\\\end{array}
Use the 4^{th} digit 0 from dividend 1810
\begin{array}{l}\phantom{825)}0002\phantom{8}\\825\overline{)1810}\\\phantom{825)}\underline{\phantom{}1650\phantom{}}\\\phantom{825)9}160\\\end{array}
Find closest multiple of 825 to 1810. We see that 2 \times 825 = 1650 is the nearest. Now subtract 1650 from 1810 to get reminder 160. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }160
Since 160 is less than 825, stop the division. The reminder is 160. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}