Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18x^{2}+66x-126-6x\left(-3x+17\right)+\left(-3x+17\right)\left(-18\right)=0
Variable x cannot be equal to \frac{17}{3} since division by zero is not defined. Multiply both sides of the equation by -3x+17.
18x^{2}+66x-126+18x^{2}-102x+\left(-3x+17\right)\left(-18\right)=0
Use the distributive property to multiply -6x by -3x+17.
36x^{2}+66x-126-102x+\left(-3x+17\right)\left(-18\right)=0
Combine 18x^{2} and 18x^{2} to get 36x^{2}.
36x^{2}-36x-126+\left(-3x+17\right)\left(-18\right)=0
Combine 66x and -102x to get -36x.
36x^{2}-36x-126+54x-306=0
Use the distributive property to multiply -3x+17 by -18.
36x^{2}+18x-126-306=0
Combine -36x and 54x to get 18x.
36x^{2}+18x-432=0
Subtract 306 from -126 to get -432.
x=\frac{-18±\sqrt{18^{2}-4\times 36\left(-432\right)}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 18 for b, and -432 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 36\left(-432\right)}}{2\times 36}
Square 18.
x=\frac{-18±\sqrt{324-144\left(-432\right)}}{2\times 36}
Multiply -4 times 36.
x=\frac{-18±\sqrt{324+62208}}{2\times 36}
Multiply -144 times -432.
x=\frac{-18±\sqrt{62532}}{2\times 36}
Add 324 to 62208.
x=\frac{-18±18\sqrt{193}}{2\times 36}
Take the square root of 62532.
x=\frac{-18±18\sqrt{193}}{72}
Multiply 2 times 36.
x=\frac{18\sqrt{193}-18}{72}
Now solve the equation x=\frac{-18±18\sqrt{193}}{72} when ± is plus. Add -18 to 18\sqrt{193}.
x=\frac{\sqrt{193}-1}{4}
Divide -18+18\sqrt{193} by 72.
x=\frac{-18\sqrt{193}-18}{72}
Now solve the equation x=\frac{-18±18\sqrt{193}}{72} when ± is minus. Subtract 18\sqrt{193} from -18.
x=\frac{-\sqrt{193}-1}{4}
Divide -18-18\sqrt{193} by 72.
x=\frac{\sqrt{193}-1}{4} x=\frac{-\sqrt{193}-1}{4}
The equation is now solved.
18x^{2}+66x-126-6x\left(-3x+17\right)+\left(-3x+17\right)\left(-18\right)=0
Variable x cannot be equal to \frac{17}{3} since division by zero is not defined. Multiply both sides of the equation by -3x+17.
18x^{2}+66x-126+18x^{2}-102x+\left(-3x+17\right)\left(-18\right)=0
Use the distributive property to multiply -6x by -3x+17.
36x^{2}+66x-126-102x+\left(-3x+17\right)\left(-18\right)=0
Combine 18x^{2} and 18x^{2} to get 36x^{2}.
36x^{2}-36x-126+\left(-3x+17\right)\left(-18\right)=0
Combine 66x and -102x to get -36x.
36x^{2}-36x-126+54x-306=0
Use the distributive property to multiply -3x+17 by -18.
36x^{2}+18x-126-306=0
Combine -36x and 54x to get 18x.
36x^{2}+18x-432=0
Subtract 306 from -126 to get -432.
36x^{2}+18x=432
Add 432 to both sides. Anything plus zero gives itself.
\frac{36x^{2}+18x}{36}=\frac{432}{36}
Divide both sides by 36.
x^{2}+\frac{18}{36}x=\frac{432}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}+\frac{1}{2}x=\frac{432}{36}
Reduce the fraction \frac{18}{36} to lowest terms by extracting and canceling out 18.
x^{2}+\frac{1}{2}x=12
Divide 432 by 36.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=12+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=12+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{193}{16}
Add 12 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{193}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{193}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{193}}{4} x+\frac{1}{4}=-\frac{\sqrt{193}}{4}
Simplify.
x=\frac{\sqrt{193}-1}{4} x=\frac{-\sqrt{193}-1}{4}
Subtract \frac{1}{4} from both sides of the equation.