Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18x^{2}+66x-126+\left(-3x+17\right)\left(-6\right)+\left(-3x+17\right)\left(-18\right)=0
Variable x cannot be equal to \frac{17}{3} since division by zero is not defined. Multiply both sides of the equation by -3x+17.
18x^{2}+66x-126+18x-102+\left(-3x+17\right)\left(-18\right)=0
Use the distributive property to multiply -3x+17 by -6.
18x^{2}+84x-126-102+\left(-3x+17\right)\left(-18\right)=0
Combine 66x and 18x to get 84x.
18x^{2}+84x-228+\left(-3x+17\right)\left(-18\right)=0
Subtract 102 from -126 to get -228.
18x^{2}+84x-228+54x-306=0
Use the distributive property to multiply -3x+17 by -18.
18x^{2}+138x-228-306=0
Combine 84x and 54x to get 138x.
18x^{2}+138x-534=0
Subtract 306 from -228 to get -534.
x=\frac{-138±\sqrt{138^{2}-4\times 18\left(-534\right)}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 138 for b, and -534 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-138±\sqrt{19044-4\times 18\left(-534\right)}}{2\times 18}
Square 138.
x=\frac{-138±\sqrt{19044-72\left(-534\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{-138±\sqrt{19044+38448}}{2\times 18}
Multiply -72 times -534.
x=\frac{-138±\sqrt{57492}}{2\times 18}
Add 19044 to 38448.
x=\frac{-138±6\sqrt{1597}}{2\times 18}
Take the square root of 57492.
x=\frac{-138±6\sqrt{1597}}{36}
Multiply 2 times 18.
x=\frac{6\sqrt{1597}-138}{36}
Now solve the equation x=\frac{-138±6\sqrt{1597}}{36} when ± is plus. Add -138 to 6\sqrt{1597}.
x=\frac{\sqrt{1597}-23}{6}
Divide -138+6\sqrt{1597} by 36.
x=\frac{-6\sqrt{1597}-138}{36}
Now solve the equation x=\frac{-138±6\sqrt{1597}}{36} when ± is minus. Subtract 6\sqrt{1597} from -138.
x=\frac{-\sqrt{1597}-23}{6}
Divide -138-6\sqrt{1597} by 36.
x=\frac{\sqrt{1597}-23}{6} x=\frac{-\sqrt{1597}-23}{6}
The equation is now solved.
18x^{2}+66x-126+\left(-3x+17\right)\left(-6\right)+\left(-3x+17\right)\left(-18\right)=0
Variable x cannot be equal to \frac{17}{3} since division by zero is not defined. Multiply both sides of the equation by -3x+17.
18x^{2}+66x-126+18x-102+\left(-3x+17\right)\left(-18\right)=0
Use the distributive property to multiply -3x+17 by -6.
18x^{2}+84x-126-102+\left(-3x+17\right)\left(-18\right)=0
Combine 66x and 18x to get 84x.
18x^{2}+84x-228+\left(-3x+17\right)\left(-18\right)=0
Subtract 102 from -126 to get -228.
18x^{2}+84x-228+54x-306=0
Use the distributive property to multiply -3x+17 by -18.
18x^{2}+138x-228-306=0
Combine 84x and 54x to get 138x.
18x^{2}+138x-534=0
Subtract 306 from -228 to get -534.
18x^{2}+138x=534
Add 534 to both sides. Anything plus zero gives itself.
\frac{18x^{2}+138x}{18}=\frac{534}{18}
Divide both sides by 18.
x^{2}+\frac{138}{18}x=\frac{534}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{23}{3}x=\frac{534}{18}
Reduce the fraction \frac{138}{18} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{23}{3}x=\frac{89}{3}
Reduce the fraction \frac{534}{18} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{23}{3}x+\left(\frac{23}{6}\right)^{2}=\frac{89}{3}+\left(\frac{23}{6}\right)^{2}
Divide \frac{23}{3}, the coefficient of the x term, by 2 to get \frac{23}{6}. Then add the square of \frac{23}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{23}{3}x+\frac{529}{36}=\frac{89}{3}+\frac{529}{36}
Square \frac{23}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{23}{3}x+\frac{529}{36}=\frac{1597}{36}
Add \frac{89}{3} to \frac{529}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{23}{6}\right)^{2}=\frac{1597}{36}
Factor x^{2}+\frac{23}{3}x+\frac{529}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{6}\right)^{2}}=\sqrt{\frac{1597}{36}}
Take the square root of both sides of the equation.
x+\frac{23}{6}=\frac{\sqrt{1597}}{6} x+\frac{23}{6}=-\frac{\sqrt{1597}}{6}
Simplify.
x=\frac{\sqrt{1597}-23}{6} x=\frac{-\sqrt{1597}-23}{6}
Subtract \frac{23}{6} from both sides of the equation.