Evaluate
\frac{3}{7}\approx 0.428571429
Factor
\frac{3}{7} = 0.42857142857142855
Share
Copied to clipboard
\left(18r^{3}\right)^{1}\times \frac{1}{42r^{3}}
Use the rules of exponents to simplify the expression.
18^{1}\left(r^{3}\right)^{1}\times \frac{1}{42}\times \frac{1}{r^{3}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
18^{1}\times \frac{1}{42}\left(r^{3}\right)^{1}\times \frac{1}{r^{3}}
Use the Commutative Property of Multiplication.
18^{1}\times \frac{1}{42}r^{3}r^{3\left(-1\right)}
To raise a power to another power, multiply the exponents.
18^{1}\times \frac{1}{42}r^{3}r^{-3}
Multiply 3 times -1.
18^{1}\times \frac{1}{42}r^{3-3}
To multiply powers of the same base, add their exponents.
18^{1}\times \frac{1}{42}r^{0}
Add the exponents 3 and -3.
18\times \frac{1}{42}r^{0}
Raise 18 to the power 1.
\frac{3}{7}r^{0}
Multiply 18 times \frac{1}{42}.
\frac{3}{7}\times 1
For any term t except 0, t^{0}=1.
\frac{3}{7}
For any term t, t\times 1=t and 1t=t.
\frac{18^{1}r^{3}}{42^{1}r^{3}}
Use the rules of exponents to simplify the expression.
\frac{18^{1}r^{3-3}}{42^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{18^{1}r^{0}}{42^{1}}
Subtract 3 from 3.
\frac{18^{1}}{42^{1}}
For any number a except 0, a^{0}=1.
\frac{3}{7}
Reduce the fraction \frac{18}{42} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}