Solve for k_2
k_{2}=\frac{\left(1-k_{1}\right)\left(k_{1}+9\right)}{8}
k_{1}\neq 9
Solve for k_1
\left\{\begin{matrix}k_{1}=\sqrt{25-8k_{2}}-4\text{, }&k_{2}\neq -18\text{ and }k_{2}\leq \frac{25}{8}\\k_{1}=-\sqrt{25-8k_{2}}-4\text{, }&k_{2}\leq \frac{25}{8}\end{matrix}\right.
Share
Copied to clipboard
18-16k_{2}-2k_{1}^{2}-16k_{1}=0
Multiply both sides of the equation by -k_{1}+9.
-16k_{2}-2k_{1}^{2}-16k_{1}=-18
Subtract 18 from both sides. Anything subtracted from zero gives its negation.
-16k_{2}-16k_{1}=-18+2k_{1}^{2}
Add 2k_{1}^{2} to both sides.
-16k_{2}=-18+2k_{1}^{2}+16k_{1}
Add 16k_{1} to both sides.
-16k_{2}=2k_{1}^{2}+16k_{1}-18
The equation is in standard form.
\frac{-16k_{2}}{-16}=\frac{2\left(k_{1}-1\right)\left(k_{1}+9\right)}{-16}
Divide both sides by -16.
k_{2}=\frac{2\left(k_{1}-1\right)\left(k_{1}+9\right)}{-16}
Dividing by -16 undoes the multiplication by -16.
k_{2}=-\frac{\left(k_{1}-1\right)\left(k_{1}+9\right)}{8}
Divide 2\left(-1+k_{1}\right)\left(9+k_{1}\right) by -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}