Solve for m
m=\left(\frac{g}{y}\right)^{2}-\frac{1}{6}
y\neq 0
Solve for g (complex solution)
g=-\frac{\sqrt{6\left(6m+1\right)y^{2}}}{6}
g=\frac{\sqrt{6\left(6m+1\right)y^{2}}}{6}\text{, }y\neq 0
Solve for g
g=\frac{\sqrt{36m+6}y}{6}
g=-\frac{\sqrt{36m+6}y}{6}\text{, }m\geq -\frac{1}{6}\text{ and }y\neq 0
Graph
Share
Copied to clipboard
18\left(g^{2}-my^{2}\right)=3y^{2}
Multiply both sides of the equation by y^{2}.
18g^{2}-18my^{2}=3y^{2}
Use the distributive property to multiply 18 by g^{2}-my^{2}.
-18my^{2}=3y^{2}-18g^{2}
Subtract 18g^{2} from both sides.
\left(-18y^{2}\right)m=3y^{2}-18g^{2}
The equation is in standard form.
\frac{\left(-18y^{2}\right)m}{-18y^{2}}=\frac{3y^{2}-18g^{2}}{-18y^{2}}
Divide both sides by -18y^{2}.
m=\frac{3y^{2}-18g^{2}}{-18y^{2}}
Dividing by -18y^{2} undoes the multiplication by -18y^{2}.
m=\frac{g^{2}}{y^{2}}-\frac{1}{6}
Divide 3y^{2}-18g^{2} by -18y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}