Solve for d
d=26
Share
Copied to clipboard
\left(d-13\right)\times 18=\left(d+13\right)\times 6
Variable d cannot be equal to any of the values -13,13 since division by zero is not defined. Multiply both sides of the equation by \left(d-13\right)\left(d+13\right), the least common multiple of d+13,d-13.
18d-234=\left(d+13\right)\times 6
Use the distributive property to multiply d-13 by 18.
18d-234=6d+78
Use the distributive property to multiply d+13 by 6.
18d-234-6d=78
Subtract 6d from both sides.
12d-234=78
Combine 18d and -6d to get 12d.
12d=78+234
Add 234 to both sides.
12d=312
Add 78 and 234 to get 312.
d=\frac{312}{12}
Divide both sides by 12.
d=26
Divide 312 by 12 to get 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}