Evaluate
\frac{18}{17}\approx 1.058823529
Factor
\frac{2 \cdot 3 ^ {2}}{17} = 1\frac{1}{17} = 1.0588235294117647
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)18}\\\end{array}
Use the 1^{st} digit 1 from dividend 18
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)18}\\\end{array}
Since 1 is less than 17, use the next digit 8 from dividend 18 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)18}\\\end{array}
Use the 2^{nd} digit 8 from dividend 18
\begin{array}{l}\phantom{17)}01\phantom{4}\\17\overline{)18}\\\phantom{17)}\underline{\phantom{}17\phantom{}}\\\phantom{17)9}1\\\end{array}
Find closest multiple of 17 to 18. We see that 1 \times 17 = 17 is the nearest. Now subtract 17 from 18 to get reminder 1. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1
Since 1 is less than 17, stop the division. The reminder is 1. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}