Evaluate
\frac{-12\sqrt{2}-215}{71}\approx -3.267191025
Share
Copied to clipboard
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{\left(-6\sqrt{2}+1\right)\left(-6\sqrt{2}-1\right)}
Rationalize the denominator of \frac{18\sqrt{2}-1}{-6\sqrt{2}+1} by multiplying numerator and denominator by -6\sqrt{2}-1.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{\left(-6\sqrt{2}\right)^{2}-1^{2}}
Consider \left(-6\sqrt{2}+1\right)\left(-6\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{\left(-6\right)^{2}\left(\sqrt{2}\right)^{2}-1^{2}}
Expand \left(-6\sqrt{2}\right)^{2}.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{36\left(\sqrt{2}\right)^{2}-1^{2}}
Calculate -6 to the power of 2 and get 36.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{36\times 2-1^{2}}
The square of \sqrt{2} is 2.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{72-1^{2}}
Multiply 36 and 2 to get 72.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{72-1}
Calculate 1 to the power of 2 and get 1.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{71}
Subtract 1 from 72 to get 71.
\frac{-108\left(\sqrt{2}\right)^{2}-18\sqrt{2}+6\sqrt{2}+1}{71}
Apply the distributive property by multiplying each term of 18\sqrt{2}-1 by each term of -6\sqrt{2}-1.
\frac{-108\times 2-18\sqrt{2}+6\sqrt{2}+1}{71}
The square of \sqrt{2} is 2.
\frac{-216-18\sqrt{2}+6\sqrt{2}+1}{71}
Multiply -108 and 2 to get -216.
\frac{-216-12\sqrt{2}+1}{71}
Combine -18\sqrt{2} and 6\sqrt{2} to get -12\sqrt{2}.
\frac{-215-12\sqrt{2}}{71}
Add -216 and 1 to get -215.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}