Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{\left(-6\sqrt{2}+1\right)\left(-6\sqrt{2}-1\right)}
Rationalize the denominator of \frac{18\sqrt{2}-1}{-6\sqrt{2}+1} by multiplying numerator and denominator by -6\sqrt{2}-1.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{\left(-6\sqrt{2}\right)^{2}-1^{2}}
Consider \left(-6\sqrt{2}+1\right)\left(-6\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{\left(-6\right)^{2}\left(\sqrt{2}\right)^{2}-1^{2}}
Expand \left(-6\sqrt{2}\right)^{2}.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{36\left(\sqrt{2}\right)^{2}-1^{2}}
Calculate -6 to the power of 2 and get 36.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{36\times 2-1^{2}}
The square of \sqrt{2} is 2.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{72-1^{2}}
Multiply 36 and 2 to get 72.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{72-1}
Calculate 1 to the power of 2 and get 1.
\frac{\left(18\sqrt{2}-1\right)\left(-6\sqrt{2}-1\right)}{71}
Subtract 1 from 72 to get 71.
\frac{-108\left(\sqrt{2}\right)^{2}-18\sqrt{2}+6\sqrt{2}+1}{71}
Apply the distributive property by multiplying each term of 18\sqrt{2}-1 by each term of -6\sqrt{2}-1.
\frac{-108\times 2-18\sqrt{2}+6\sqrt{2}+1}{71}
The square of \sqrt{2} is 2.
\frac{-216-18\sqrt{2}+6\sqrt{2}+1}{71}
Multiply -108 and 2 to get -216.
\frac{-216-12\sqrt{2}+1}{71}
Combine -18\sqrt{2} and 6\sqrt{2} to get -12\sqrt{2}.
\frac{-215-12\sqrt{2}}{71}
Add -216 and 1 to get -215.