Evaluate
\frac{1775320}{19}\approx 93437.894736842
Factor
\frac{2 ^ {3} \cdot 5 \cdot 44383}{19} = 93437\frac{17}{19} = 93437.8947368421
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)1775320}\\\end{array}
Use the 1^{st} digit 1 from dividend 1775320
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)1775320}\\\end{array}
Since 1 is less than 19, use the next digit 7 from dividend 1775320 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)1775320}\\\end{array}
Use the 2^{nd} digit 7 from dividend 1775320
\begin{array}{l}\phantom{19)}00\phantom{4}\\19\overline{)1775320}\\\end{array}
Since 17 is less than 19, use the next digit 7 from dividend 1775320 and add 0 to the quotient
\begin{array}{l}\phantom{19)}00\phantom{5}\\19\overline{)1775320}\\\end{array}
Use the 3^{rd} digit 7 from dividend 1775320
\begin{array}{l}\phantom{19)}009\phantom{6}\\19\overline{)1775320}\\\phantom{19)}\underline{\phantom{}171\phantom{9999}}\\\phantom{19)99}6\\\end{array}
Find closest multiple of 19 to 177. We see that 9 \times 19 = 171 is the nearest. Now subtract 171 from 177 to get reminder 6. Add 9 to quotient.
\begin{array}{l}\phantom{19)}009\phantom{7}\\19\overline{)1775320}\\\phantom{19)}\underline{\phantom{}171\phantom{9999}}\\\phantom{19)99}65\\\end{array}
Use the 4^{th} digit 5 from dividend 1775320
\begin{array}{l}\phantom{19)}0093\phantom{8}\\19\overline{)1775320}\\\phantom{19)}\underline{\phantom{}171\phantom{9999}}\\\phantom{19)99}65\\\phantom{19)}\underline{\phantom{99}57\phantom{999}}\\\phantom{19)999}8\\\end{array}
Find closest multiple of 19 to 65. We see that 3 \times 19 = 57 is the nearest. Now subtract 57 from 65 to get reminder 8. Add 3 to quotient.
\begin{array}{l}\phantom{19)}0093\phantom{9}\\19\overline{)1775320}\\\phantom{19)}\underline{\phantom{}171\phantom{9999}}\\\phantom{19)99}65\\\phantom{19)}\underline{\phantom{99}57\phantom{999}}\\\phantom{19)999}83\\\end{array}
Use the 5^{th} digit 3 from dividend 1775320
\begin{array}{l}\phantom{19)}00934\phantom{10}\\19\overline{)1775320}\\\phantom{19)}\underline{\phantom{}171\phantom{9999}}\\\phantom{19)99}65\\\phantom{19)}\underline{\phantom{99}57\phantom{999}}\\\phantom{19)999}83\\\phantom{19)}\underline{\phantom{999}76\phantom{99}}\\\phantom{19)9999}7\\\end{array}
Find closest multiple of 19 to 83. We see that 4 \times 19 = 76 is the nearest. Now subtract 76 from 83 to get reminder 7. Add 4 to quotient.
\begin{array}{l}\phantom{19)}00934\phantom{11}\\19\overline{)1775320}\\\phantom{19)}\underline{\phantom{}171\phantom{9999}}\\\phantom{19)99}65\\\phantom{19)}\underline{\phantom{99}57\phantom{999}}\\\phantom{19)999}83\\\phantom{19)}\underline{\phantom{999}76\phantom{99}}\\\phantom{19)9999}72\\\end{array}
Use the 6^{th} digit 2 from dividend 1775320
\begin{array}{l}\phantom{19)}009343\phantom{12}\\19\overline{)1775320}\\\phantom{19)}\underline{\phantom{}171\phantom{9999}}\\\phantom{19)99}65\\\phantom{19)}\underline{\phantom{99}57\phantom{999}}\\\phantom{19)999}83\\\phantom{19)}\underline{\phantom{999}76\phantom{99}}\\\phantom{19)9999}72\\\phantom{19)}\underline{\phantom{9999}57\phantom{9}}\\\phantom{19)9999}15\\\end{array}
Find closest multiple of 19 to 72. We see that 3 \times 19 = 57 is the nearest. Now subtract 57 from 72 to get reminder 15. Add 3 to quotient.
\begin{array}{l}\phantom{19)}009343\phantom{13}\\19\overline{)1775320}\\\phantom{19)}\underline{\phantom{}171\phantom{9999}}\\\phantom{19)99}65\\\phantom{19)}\underline{\phantom{99}57\phantom{999}}\\\phantom{19)999}83\\\phantom{19)}\underline{\phantom{999}76\phantom{99}}\\\phantom{19)9999}72\\\phantom{19)}\underline{\phantom{9999}57\phantom{9}}\\\phantom{19)9999}150\\\end{array}
Use the 7^{th} digit 0 from dividend 1775320
\begin{array}{l}\phantom{19)}0093437\phantom{14}\\19\overline{)1775320}\\\phantom{19)}\underline{\phantom{}171\phantom{9999}}\\\phantom{19)99}65\\\phantom{19)}\underline{\phantom{99}57\phantom{999}}\\\phantom{19)999}83\\\phantom{19)}\underline{\phantom{999}76\phantom{99}}\\\phantom{19)9999}72\\\phantom{19)}\underline{\phantom{9999}57\phantom{9}}\\\phantom{19)9999}150\\\phantom{19)}\underline{\phantom{9999}133\phantom{}}\\\phantom{19)99999}17\\\end{array}
Find closest multiple of 19 to 150. We see that 7 \times 19 = 133 is the nearest. Now subtract 133 from 150 to get reminder 17. Add 7 to quotient.
\text{Quotient: }93437 \text{Reminder: }17
Since 17 is less than 19, stop the division. The reminder is 17. The topmost line 0093437 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 93437.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}