Evaluate
\frac{1701500}{1649}\approx 1031.837477259
Factor
\frac{2 ^ {2} \cdot 5 ^ {3} \cdot 41 \cdot 83}{17 \cdot 97} = 1031\frac{1381}{1649} = 1031.8374772589448
Share
Copied to clipboard
\begin{array}{l}\phantom{1649)}\phantom{1}\\1649\overline{)1701500}\\\end{array}
Use the 1^{st} digit 1 from dividend 1701500
\begin{array}{l}\phantom{1649)}0\phantom{2}\\1649\overline{)1701500}\\\end{array}
Since 1 is less than 1649, use the next digit 7 from dividend 1701500 and add 0 to the quotient
\begin{array}{l}\phantom{1649)}0\phantom{3}\\1649\overline{)1701500}\\\end{array}
Use the 2^{nd} digit 7 from dividend 1701500
\begin{array}{l}\phantom{1649)}00\phantom{4}\\1649\overline{)1701500}\\\end{array}
Since 17 is less than 1649, use the next digit 0 from dividend 1701500 and add 0 to the quotient
\begin{array}{l}\phantom{1649)}00\phantom{5}\\1649\overline{)1701500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1701500
\begin{array}{l}\phantom{1649)}000\phantom{6}\\1649\overline{)1701500}\\\end{array}
Since 170 is less than 1649, use the next digit 1 from dividend 1701500 and add 0 to the quotient
\begin{array}{l}\phantom{1649)}000\phantom{7}\\1649\overline{)1701500}\\\end{array}
Use the 4^{th} digit 1 from dividend 1701500
\begin{array}{l}\phantom{1649)}0001\phantom{8}\\1649\overline{)1701500}\\\phantom{1649)}\underline{\phantom{}1649\phantom{999}}\\\phantom{1649)99}52\\\end{array}
Find closest multiple of 1649 to 1701. We see that 1 \times 1649 = 1649 is the nearest. Now subtract 1649 from 1701 to get reminder 52. Add 1 to quotient.
\begin{array}{l}\phantom{1649)}0001\phantom{9}\\1649\overline{)1701500}\\\phantom{1649)}\underline{\phantom{}1649\phantom{999}}\\\phantom{1649)99}525\\\end{array}
Use the 5^{th} digit 5 from dividend 1701500
\begin{array}{l}\phantom{1649)}00010\phantom{10}\\1649\overline{)1701500}\\\phantom{1649)}\underline{\phantom{}1649\phantom{999}}\\\phantom{1649)99}525\\\end{array}
Since 525 is less than 1649, use the next digit 0 from dividend 1701500 and add 0 to the quotient
\begin{array}{l}\phantom{1649)}00010\phantom{11}\\1649\overline{)1701500}\\\phantom{1649)}\underline{\phantom{}1649\phantom{999}}\\\phantom{1649)99}5250\\\end{array}
Use the 6^{th} digit 0 from dividend 1701500
\begin{array}{l}\phantom{1649)}000103\phantom{12}\\1649\overline{)1701500}\\\phantom{1649)}\underline{\phantom{}1649\phantom{999}}\\\phantom{1649)99}5250\\\phantom{1649)}\underline{\phantom{99}4947\phantom{9}}\\\phantom{1649)999}303\\\end{array}
Find closest multiple of 1649 to 5250. We see that 3 \times 1649 = 4947 is the nearest. Now subtract 4947 from 5250 to get reminder 303. Add 3 to quotient.
\begin{array}{l}\phantom{1649)}000103\phantom{13}\\1649\overline{)1701500}\\\phantom{1649)}\underline{\phantom{}1649\phantom{999}}\\\phantom{1649)99}5250\\\phantom{1649)}\underline{\phantom{99}4947\phantom{9}}\\\phantom{1649)999}3030\\\end{array}
Use the 7^{th} digit 0 from dividend 1701500
\begin{array}{l}\phantom{1649)}0001031\phantom{14}\\1649\overline{)1701500}\\\phantom{1649)}\underline{\phantom{}1649\phantom{999}}\\\phantom{1649)99}5250\\\phantom{1649)}\underline{\phantom{99}4947\phantom{9}}\\\phantom{1649)999}3030\\\phantom{1649)}\underline{\phantom{999}1649\phantom{}}\\\phantom{1649)999}1381\\\end{array}
Find closest multiple of 1649 to 3030. We see that 1 \times 1649 = 1649 is the nearest. Now subtract 1649 from 3030 to get reminder 1381. Add 1 to quotient.
\text{Quotient: }1031 \text{Reminder: }1381
Since 1381 is less than 1649, stop the division. The reminder is 1381. The topmost line 0001031 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1031.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}