Evaluate
\frac{170}{27}\approx 6.296296296
Factor
\frac{2 \cdot 5 \cdot 17}{3 ^ {3}} = 6\frac{8}{27} = 6.296296296296297
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)170}\\\end{array}
Use the 1^{st} digit 1 from dividend 170
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)170}\\\end{array}
Since 1 is less than 27, use the next digit 7 from dividend 170 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)170}\\\end{array}
Use the 2^{nd} digit 7 from dividend 170
\begin{array}{l}\phantom{27)}00\phantom{4}\\27\overline{)170}\\\end{array}
Since 17 is less than 27, use the next digit 0 from dividend 170 and add 0 to the quotient
\begin{array}{l}\phantom{27)}00\phantom{5}\\27\overline{)170}\\\end{array}
Use the 3^{rd} digit 0 from dividend 170
\begin{array}{l}\phantom{27)}006\phantom{6}\\27\overline{)170}\\\phantom{27)}\underline{\phantom{}162\phantom{}}\\\phantom{27)99}8\\\end{array}
Find closest multiple of 27 to 170. We see that 6 \times 27 = 162 is the nearest. Now subtract 162 from 170 to get reminder 8. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }8
Since 8 is less than 27, stop the division. The reminder is 8. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}