Solve for x
x=4
Graph
Share
Copied to clipboard
17.6=0.4\left(7x+16\right)
Variable x cannot be equal to -\frac{16}{7} since division by zero is not defined. Multiply both sides of the equation by 2\left(7x+16\right).
17.6=2.8x+6.4
Use the distributive property to multiply 0.4 by 7x+16.
2.8x+6.4=17.6
Swap sides so that all variable terms are on the left hand side.
2.8x=17.6-6.4
Subtract 6.4 from both sides.
2.8x=11.2
Subtract 6.4 from 17.6 to get 11.2.
x=\frac{11.2}{2.8}
Divide both sides by 2.8.
x=\frac{112}{28}
Expand \frac{11.2}{2.8} by multiplying both numerator and the denominator by 10.
x=4
Divide 112 by 28 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}