Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{17}{30}x+\frac{17}{30}\times 3=\frac{17}{50}\left(x+10\right)
Use the distributive property to multiply \frac{17}{30} by x+3.
\frac{17}{30}x+\frac{17\times 3}{30}=\frac{17}{50}\left(x+10\right)
Express \frac{17}{30}\times 3 as a single fraction.
\frac{17}{30}x+\frac{51}{30}=\frac{17}{50}\left(x+10\right)
Multiply 17 and 3 to get 51.
\frac{17}{30}x+\frac{17}{10}=\frac{17}{50}\left(x+10\right)
Reduce the fraction \frac{51}{30} to lowest terms by extracting and canceling out 3.
\frac{17}{30}x+\frac{17}{10}=\frac{17}{50}x+\frac{17}{50}\times 10
Use the distributive property to multiply \frac{17}{50} by x+10.
\frac{17}{30}x+\frac{17}{10}=\frac{17}{50}x+\frac{17\times 10}{50}
Express \frac{17}{50}\times 10 as a single fraction.
\frac{17}{30}x+\frac{17}{10}=\frac{17}{50}x+\frac{170}{50}
Multiply 17 and 10 to get 170.
\frac{17}{30}x+\frac{17}{10}=\frac{17}{50}x+\frac{17}{5}
Reduce the fraction \frac{170}{50} to lowest terms by extracting and canceling out 10.
\frac{17}{30}x+\frac{17}{10}-\frac{17}{50}x=\frac{17}{5}
Subtract \frac{17}{50}x from both sides.
\frac{17}{75}x+\frac{17}{10}=\frac{17}{5}
Combine \frac{17}{30}x and -\frac{17}{50}x to get \frac{17}{75}x.
\frac{17}{75}x=\frac{17}{5}-\frac{17}{10}
Subtract \frac{17}{10} from both sides.
\frac{17}{75}x=\frac{34}{10}-\frac{17}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{17}{5} and \frac{17}{10} to fractions with denominator 10.
\frac{17}{75}x=\frac{34-17}{10}
Since \frac{34}{10} and \frac{17}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{75}x=\frac{17}{10}
Subtract 17 from 34 to get 17.
x=\frac{17}{10}\times \frac{75}{17}
Multiply both sides by \frac{75}{17}, the reciprocal of \frac{17}{75}.
x=\frac{17\times 75}{10\times 17}
Multiply \frac{17}{10} times \frac{75}{17} by multiplying numerator times numerator and denominator times denominator.
x=\frac{75}{10}
Cancel out 17 in both numerator and denominator.
x=\frac{15}{2}
Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.