Evaluate
\frac{617317}{474075}\approx 1.302150504
Factor
\frac{59 \cdot 10463}{3 ^ {2} \cdot 5 ^ {2} \cdot 7 ^ {2} \cdot 43} = 1\frac{143242}{474075} = 1.3021505036122976
Share
Copied to clipboard
\frac{17\times 17}{15\times 15}+\frac{2}{15}\times \frac{2}{15}-\frac{17}{15}\times \frac{4}{15}\times \frac{1}{4214}
Multiply \frac{17}{15} times \frac{17}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{289}{225}+\frac{2}{15}\times \frac{2}{15}-\frac{17}{15}\times \frac{4}{15}\times \frac{1}{4214}
Do the multiplications in the fraction \frac{17\times 17}{15\times 15}.
\frac{289}{225}+\frac{2\times 2}{15\times 15}-\frac{17}{15}\times \frac{4}{15}\times \frac{1}{4214}
Multiply \frac{2}{15} times \frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{289}{225}+\frac{4}{225}-\frac{17}{15}\times \frac{4}{15}\times \frac{1}{4214}
Do the multiplications in the fraction \frac{2\times 2}{15\times 15}.
\frac{289+4}{225}-\frac{17}{15}\times \frac{4}{15}\times \frac{1}{4214}
Since \frac{289}{225} and \frac{4}{225} have the same denominator, add them by adding their numerators.
\frac{293}{225}-\frac{17}{15}\times \frac{4}{15}\times \frac{1}{4214}
Add 289 and 4 to get 293.
\frac{293}{225}-\frac{17\times 4}{15\times 15}\times \frac{1}{4214}
Multiply \frac{17}{15} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{293}{225}-\frac{68}{225}\times \frac{1}{4214}
Do the multiplications in the fraction \frac{17\times 4}{15\times 15}.
\frac{293}{225}-\frac{68\times 1}{225\times 4214}
Multiply \frac{68}{225} times \frac{1}{4214} by multiplying numerator times numerator and denominator times denominator.
\frac{293}{225}-\frac{68}{948150}
Do the multiplications in the fraction \frac{68\times 1}{225\times 4214}.
\frac{293}{225}-\frac{34}{474075}
Reduce the fraction \frac{68}{948150} to lowest terms by extracting and canceling out 2.
\frac{617351}{474075}-\frac{34}{474075}
Least common multiple of 225 and 474075 is 474075. Convert \frac{293}{225} and \frac{34}{474075} to fractions with denominator 474075.
\frac{617351-34}{474075}
Since \frac{617351}{474075} and \frac{34}{474075} have the same denominator, subtract them by subtracting their numerators.
\frac{617317}{474075}
Subtract 34 from 617351 to get 617317.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}