Evaluate
\frac{169}{36}\approx 4.694444444
Factor
\frac{13 ^ {2}}{2 ^ {2} \cdot 3 ^ {2}} = 4\frac{25}{36} = 4.694444444444445
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)169}\\\end{array}
Use the 1^{st} digit 1 from dividend 169
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)169}\\\end{array}
Since 1 is less than 36, use the next digit 6 from dividend 169 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)169}\\\end{array}
Use the 2^{nd} digit 6 from dividend 169
\begin{array}{l}\phantom{36)}00\phantom{4}\\36\overline{)169}\\\end{array}
Since 16 is less than 36, use the next digit 9 from dividend 169 and add 0 to the quotient
\begin{array}{l}\phantom{36)}00\phantom{5}\\36\overline{)169}\\\end{array}
Use the 3^{rd} digit 9 from dividend 169
\begin{array}{l}\phantom{36)}004\phantom{6}\\36\overline{)169}\\\phantom{36)}\underline{\phantom{}144\phantom{}}\\\phantom{36)9}25\\\end{array}
Find closest multiple of 36 to 169. We see that 4 \times 36 = 144 is the nearest. Now subtract 144 from 169 to get reminder 25. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }25
Since 25 is less than 36, stop the division. The reminder is 25. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}