Evaluate
\frac{167}{10}=16.7
Factor
\frac{167}{2 \cdot 5} = 16\frac{7}{10} = 16.7
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)167}\\\end{array}
Use the 1^{st} digit 1 from dividend 167
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)167}\\\end{array}
Since 1 is less than 10, use the next digit 6 from dividend 167 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)167}\\\end{array}
Use the 2^{nd} digit 6 from dividend 167
\begin{array}{l}\phantom{10)}01\phantom{4}\\10\overline{)167}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}6\\\end{array}
Find closest multiple of 10 to 16. We see that 1 \times 10 = 10 is the nearest. Now subtract 10 from 16 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{10)}01\phantom{5}\\10\overline{)167}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}67\\\end{array}
Use the 3^{rd} digit 7 from dividend 167
\begin{array}{l}\phantom{10)}016\phantom{6}\\10\overline{)167}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}67\\\phantom{10)}\underline{\phantom{9}60\phantom{}}\\\phantom{10)99}7\\\end{array}
Find closest multiple of 10 to 67. We see that 6 \times 10 = 60 is the nearest. Now subtract 60 from 67 to get reminder 7. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }7
Since 7 is less than 10, stop the division. The reminder is 7. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}