Evaluate
\frac{55}{14}\approx 3.928571429
Factor
\frac{5 \cdot 11}{2 \cdot 7} = 3\frac{13}{14} = 3.9285714285714284
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)165}\\\end{array}
Use the 1^{st} digit 1 from dividend 165
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)165}\\\end{array}
Since 1 is less than 42, use the next digit 6 from dividend 165 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)165}\\\end{array}
Use the 2^{nd} digit 6 from dividend 165
\begin{array}{l}\phantom{42)}00\phantom{4}\\42\overline{)165}\\\end{array}
Since 16 is less than 42, use the next digit 5 from dividend 165 and add 0 to the quotient
\begin{array}{l}\phantom{42)}00\phantom{5}\\42\overline{)165}\\\end{array}
Use the 3^{rd} digit 5 from dividend 165
\begin{array}{l}\phantom{42)}003\phantom{6}\\42\overline{)165}\\\phantom{42)}\underline{\phantom{}126\phantom{}}\\\phantom{42)9}39\\\end{array}
Find closest multiple of 42 to 165. We see that 3 \times 42 = 126 is the nearest. Now subtract 126 from 165 to get reminder 39. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }39
Since 39 is less than 42, stop the division. The reminder is 39. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}