Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\times 18\left(k-\left(-\frac{1}{3}\sqrt{2}+\frac{1}{3}\right)\right)\left(k-\left(\frac{1}{3}\sqrt{2}+\frac{1}{3}\right)\right)}{3\sqrt{2}}
Factor the expressions that are not already factored.
\frac{3\times 18\left(k-\left(-\frac{1}{3}\sqrt{2}+\frac{1}{3}\right)\right)\left(k-\left(\frac{1}{3}\sqrt{2}+\frac{1}{3}\right)\right)}{\sqrt{2}}
Cancel out 3 in both numerator and denominator.
\frac{54k^{2}-36k-6}{\sqrt{2}}
Expand the expression.
\frac{\left(54k^{2}-36k-6\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{54k^{2}-36k-6}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(54k^{2}-36k-6\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{54k^{2}\sqrt{2}-36k\sqrt{2}-6\sqrt{2}}{2}
Use the distributive property to multiply 54k^{2}-36k-6 by \sqrt{2}.