Evaluate
3\sqrt{2}\left(9k^{2}-6k-1\right)
Factor
27\sqrt{2}\left(k-\frac{1-\sqrt{2}}{3}\right)\left(k-\frac{\sqrt{2}+1}{3}\right)
Share
Copied to clipboard
\frac{9\times 18\left(k-\left(-\frac{1}{3}\sqrt{2}+\frac{1}{3}\right)\right)\left(k-\left(\frac{1}{3}\sqrt{2}+\frac{1}{3}\right)\right)}{3\sqrt{2}}
Factor the expressions that are not already factored.
\frac{3\times 18\left(k-\left(-\frac{1}{3}\sqrt{2}+\frac{1}{3}\right)\right)\left(k-\left(\frac{1}{3}\sqrt{2}+\frac{1}{3}\right)\right)}{\sqrt{2}}
Cancel out 3 in both numerator and denominator.
\frac{54k^{2}-36k-6}{\sqrt{2}}
Expand the expression.
\frac{\left(54k^{2}-36k-6\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{54k^{2}-36k-6}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(54k^{2}-36k-6\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{54k^{2}\sqrt{2}-36k\sqrt{2}-6\sqrt{2}}{2}
Use the distributive property to multiply 54k^{2}-36k-6 by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}