Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

9\left(16k^{2}+24k^{4}\right)=20\left(2k^{2}+1\right)^{2}
Multiply both sides of the equation by 9\left(2k^{2}+1\right)^{2}, the least common multiple of \left(2k^{2}+1\right)^{2},9.
144k^{2}+216k^{4}=20\left(2k^{2}+1\right)^{2}
Use the distributive property to multiply 9 by 16k^{2}+24k^{4}.
144k^{2}+216k^{4}=20\left(4\left(k^{2}\right)^{2}+4k^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2k^{2}+1\right)^{2}.
144k^{2}+216k^{4}=20\left(4k^{4}+4k^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
144k^{2}+216k^{4}=80k^{4}+80k^{2}+20
Use the distributive property to multiply 20 by 4k^{4}+4k^{2}+1.
144k^{2}+216k^{4}-80k^{4}=80k^{2}+20
Subtract 80k^{4} from both sides.
144k^{2}+136k^{4}=80k^{2}+20
Combine 216k^{4} and -80k^{4} to get 136k^{4}.
144k^{2}+136k^{4}-80k^{2}=20
Subtract 80k^{2} from both sides.
64k^{2}+136k^{4}=20
Combine 144k^{2} and -80k^{2} to get 64k^{2}.
64k^{2}+136k^{4}-20=0
Subtract 20 from both sides.
136t^{2}+64t-20=0
Substitute t for k^{2}.
t=\frac{-64±\sqrt{64^{2}-4\times 136\left(-20\right)}}{2\times 136}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 136 for a, 64 for b, and -20 for c in the quadratic formula.
t=\frac{-64±24\sqrt{26}}{272}
Do the calculations.
t=\frac{3\sqrt{26}}{34}-\frac{4}{17} t=-\frac{3\sqrt{26}}{34}-\frac{4}{17}
Solve the equation t=\frac{-64±24\sqrt{26}}{272} when ± is plus and when ± is minus.
k=\frac{\sqrt{\frac{6\sqrt{26}-16}{17}}}{2} k=-\frac{\sqrt{\frac{6\sqrt{26}-16}{17}}}{2}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.