Solve for k
k=-\frac{\sqrt{102\sqrt{26}-272}}{34}\approx -0.463270298
k=\frac{\sqrt{102\sqrt{26}-272}}{34}\approx 0.463270298
Share
Copied to clipboard
9\left(16k^{2}+24k^{4}\right)=20\left(2k^{2}+1\right)^{2}
Multiply both sides of the equation by 9\left(2k^{2}+1\right)^{2}, the least common multiple of \left(2k^{2}+1\right)^{2},9.
144k^{2}+216k^{4}=20\left(2k^{2}+1\right)^{2}
Use the distributive property to multiply 9 by 16k^{2}+24k^{4}.
144k^{2}+216k^{4}=20\left(4\left(k^{2}\right)^{2}+4k^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2k^{2}+1\right)^{2}.
144k^{2}+216k^{4}=20\left(4k^{4}+4k^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
144k^{2}+216k^{4}=80k^{4}+80k^{2}+20
Use the distributive property to multiply 20 by 4k^{4}+4k^{2}+1.
144k^{2}+216k^{4}-80k^{4}=80k^{2}+20
Subtract 80k^{4} from both sides.
144k^{2}+136k^{4}=80k^{2}+20
Combine 216k^{4} and -80k^{4} to get 136k^{4}.
144k^{2}+136k^{4}-80k^{2}=20
Subtract 80k^{2} from both sides.
64k^{2}+136k^{4}=20
Combine 144k^{2} and -80k^{2} to get 64k^{2}.
64k^{2}+136k^{4}-20=0
Subtract 20 from both sides.
136t^{2}+64t-20=0
Substitute t for k^{2}.
t=\frac{-64±\sqrt{64^{2}-4\times 136\left(-20\right)}}{2\times 136}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 136 for a, 64 for b, and -20 for c in the quadratic formula.
t=\frac{-64±24\sqrt{26}}{272}
Do the calculations.
t=\frac{3\sqrt{26}}{34}-\frac{4}{17} t=-\frac{3\sqrt{26}}{34}-\frac{4}{17}
Solve the equation t=\frac{-64±24\sqrt{26}}{272} when ± is plus and when ± is minus.
k=\frac{\sqrt{\frac{6\sqrt{26}-16}{17}}}{2} k=-\frac{\sqrt{\frac{6\sqrt{26}-16}{17}}}{2}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}