Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+1\right)\times 16+x\left(x+1\right)\left(-1\right)=x\times 15
Variable x cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+1\right), the least common multiple of x,x+1.
16x+16+x\left(x+1\right)\left(-1\right)=x\times 15
Use the distributive property to multiply x+1 by 16.
16x+16+\left(x^{2}+x\right)\left(-1\right)=x\times 15
Use the distributive property to multiply x by x+1.
16x+16-x^{2}-x=x\times 15
Use the distributive property to multiply x^{2}+x by -1.
15x+16-x^{2}=x\times 15
Combine 16x and -x to get 15x.
15x+16-x^{2}-x\times 15=0
Subtract x\times 15 from both sides.
16-x^{2}=0
Combine 15x and -x\times 15 to get 0.
-x^{2}=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-16}{-1}
Divide both sides by -1.
x^{2}=16
Fraction \frac{-16}{-1} can be simplified to 16 by removing the negative sign from both the numerator and the denominator.
x=4 x=-4
Take the square root of both sides of the equation.
\left(x+1\right)\times 16+x\left(x+1\right)\left(-1\right)=x\times 15
Variable x cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+1\right), the least common multiple of x,x+1.
16x+16+x\left(x+1\right)\left(-1\right)=x\times 15
Use the distributive property to multiply x+1 by 16.
16x+16+\left(x^{2}+x\right)\left(-1\right)=x\times 15
Use the distributive property to multiply x by x+1.
16x+16-x^{2}-x=x\times 15
Use the distributive property to multiply x^{2}+x by -1.
15x+16-x^{2}=x\times 15
Combine 16x and -x to get 15x.
15x+16-x^{2}-x\times 15=0
Subtract x\times 15 from both sides.
16-x^{2}=0
Combine 15x and -x\times 15 to get 0.
-x^{2}+16=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 16}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\times 16}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{64}}{2\left(-1\right)}
Multiply 4 times 16.
x=\frac{0±8}{2\left(-1\right)}
Take the square root of 64.
x=\frac{0±8}{-2}
Multiply 2 times -1.
x=-4
Now solve the equation x=\frac{0±8}{-2} when ± is plus. Divide 8 by -2.
x=4
Now solve the equation x=\frac{0±8}{-2} when ± is minus. Divide -8 by -2.
x=-4 x=4
The equation is now solved.