Evaluate
\frac{448}{5}=89.6
Factor
\frac{2 ^ {6} \cdot 7}{5} = 89\frac{3}{5} = 89.6
Share
Copied to clipboard
\frac{16}{5}\left(\frac{3+2}{3}+\frac{1}{5}\right)\times \frac{15}{1}
Multiply 1 and 3 to get 3.
\frac{16}{5}\left(\frac{5}{3}+\frac{1}{5}\right)\times \frac{15}{1}
Add 3 and 2 to get 5.
\frac{16}{5}\left(\frac{25}{15}+\frac{3}{15}\right)\times \frac{15}{1}
Least common multiple of 3 and 5 is 15. Convert \frac{5}{3} and \frac{1}{5} to fractions with denominator 15.
\frac{16}{5}\times \frac{25+3}{15}\times \frac{15}{1}
Since \frac{25}{15} and \frac{3}{15} have the same denominator, add them by adding their numerators.
\frac{16}{5}\times \frac{28}{15}\times \frac{15}{1}
Add 25 and 3 to get 28.
\frac{16\times 28}{5\times 15}\times \frac{15}{1}
Multiply \frac{16}{5} times \frac{28}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{448}{75}\times \frac{15}{1}
Do the multiplications in the fraction \frac{16\times 28}{5\times 15}.
\frac{448}{75}\times 15
Anything divided by one gives itself.
\frac{448\times 15}{75}
Express \frac{448}{75}\times 15 as a single fraction.
\frac{6720}{75}
Multiply 448 and 15 to get 6720.
\frac{448}{5}
Reduce the fraction \frac{6720}{75} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}