Evaluate
\frac{15\sqrt{2}+17\sqrt{6}}{4}\approx 15.713632266
Factor
\frac{15 \sqrt{2} + 17 \sqrt{6}}{4} = 15.713632265727613
Share
Copied to clipboard
\frac{16\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Rationalize the denominator of \frac{16}{\sqrt{6}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{2}.
\frac{16\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Consider \left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16\left(\sqrt{6}+\sqrt{2}\right)}{6-2}+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Square \sqrt{6}. Square \sqrt{2}.
\frac{16\left(\sqrt{6}+\sqrt{2}\right)}{4}+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Subtract 2 from 6 to get 4.
4\left(\sqrt{6}+\sqrt{2}\right)+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Divide 16\left(\sqrt{6}+\sqrt{2}\right) by 4 to get 4\left(\sqrt{6}+\sqrt{2}\right).
4\left(\sqrt{6}+\sqrt{2}\right)+\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)
Divide 2\left(\sqrt{6}-\sqrt{2}\right) by 8 to get \frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right).
4\sqrt{6}+4\sqrt{2}+\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)
Use the distributive property to multiply 4 by \sqrt{6}+\sqrt{2}.
4\sqrt{6}+4\sqrt{2}+\frac{1}{4}\sqrt{6}+\frac{1}{4}\left(-1\right)\sqrt{2}
Use the distributive property to multiply \frac{1}{4} by \sqrt{6}-\sqrt{2}.
4\sqrt{6}+4\sqrt{2}+\frac{1}{4}\sqrt{6}-\frac{1}{4}\sqrt{2}
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{17}{4}\sqrt{6}+4\sqrt{2}-\frac{1}{4}\sqrt{2}
Combine 4\sqrt{6} and \frac{1}{4}\sqrt{6} to get \frac{17}{4}\sqrt{6}.
\frac{17}{4}\sqrt{6}+\frac{15}{4}\sqrt{2}
Combine 4\sqrt{2} and -\frac{1}{4}\sqrt{2} to get \frac{15}{4}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}