Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{16\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Rationalize the denominator of \frac{16}{\sqrt{6}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{2}.
\frac{16\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Consider \left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16\left(\sqrt{6}+\sqrt{2}\right)}{6-2}+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Square \sqrt{6}. Square \sqrt{2}.
\frac{16\left(\sqrt{6}+\sqrt{2}\right)}{4}+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Subtract 2 from 6 to get 4.
4\left(\sqrt{6}+\sqrt{2}\right)+\frac{2\left(\sqrt{6}-\sqrt{2}\right)}{8}
Divide 16\left(\sqrt{6}+\sqrt{2}\right) by 4 to get 4\left(\sqrt{6}+\sqrt{2}\right).
4\left(\sqrt{6}+\sqrt{2}\right)+\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)
Divide 2\left(\sqrt{6}-\sqrt{2}\right) by 8 to get \frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right).
4\sqrt{6}+4\sqrt{2}+\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)
Use the distributive property to multiply 4 by \sqrt{6}+\sqrt{2}.
4\sqrt{6}+4\sqrt{2}+\frac{1}{4}\sqrt{6}+\frac{1}{4}\left(-1\right)\sqrt{2}
Use the distributive property to multiply \frac{1}{4} by \sqrt{6}-\sqrt{2}.
4\sqrt{6}+4\sqrt{2}+\frac{1}{4}\sqrt{6}-\frac{1}{4}\sqrt{2}
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{17}{4}\sqrt{6}+4\sqrt{2}-\frac{1}{4}\sqrt{2}
Combine 4\sqrt{6} and \frac{1}{4}\sqrt{6} to get \frac{17}{4}\sqrt{6}.
\frac{17}{4}\sqrt{6}+\frac{15}{4}\sqrt{2}
Combine 4\sqrt{2} and -\frac{1}{4}\sqrt{2} to get \frac{15}{4}\sqrt{2}.