Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\begin{array}{l}\phantom{10000)}\phantom{1}\\10000\overline{)150000}\\\end{array}
Use the 1^{st} digit 1 from dividend 150000
\begin{array}{l}\phantom{10000)}0\phantom{2}\\10000\overline{)150000}\\\end{array}
Since 1 is less than 10000, use the next digit 5 from dividend 150000 and add 0 to the quotient
\begin{array}{l}\phantom{10000)}0\phantom{3}\\10000\overline{)150000}\\\end{array}
Use the 2^{nd} digit 5 from dividend 150000
\begin{array}{l}\phantom{10000)}00\phantom{4}\\10000\overline{)150000}\\\end{array}
Since 15 is less than 10000, use the next digit 0 from dividend 150000 and add 0 to the quotient
\begin{array}{l}\phantom{10000)}00\phantom{5}\\10000\overline{)150000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 150000
\begin{array}{l}\phantom{10000)}000\phantom{6}\\10000\overline{)150000}\\\end{array}
Since 150 is less than 10000, use the next digit 0 from dividend 150000 and add 0 to the quotient
\begin{array}{l}\phantom{10000)}000\phantom{7}\\10000\overline{)150000}\\\end{array}
Use the 4^{th} digit 0 from dividend 150000
\begin{array}{l}\phantom{10000)}0000\phantom{8}\\10000\overline{)150000}\\\end{array}
Since 1500 is less than 10000, use the next digit 0 from dividend 150000 and add 0 to the quotient
\begin{array}{l}\phantom{10000)}0000\phantom{9}\\10000\overline{)150000}\\\end{array}
Use the 5^{th} digit 0 from dividend 150000
\begin{array}{l}\phantom{10000)}00001\phantom{10}\\10000\overline{)150000}\\\phantom{10000)}\underline{\phantom{}10000\phantom{9}}\\\phantom{10000)9}5000\\\end{array}
Find closest multiple of 10000 to 15000. We see that 1 \times 10000 = 10000 is the nearest. Now subtract 10000 from 15000 to get reminder 5000. Add 1 to quotient.
\begin{array}{l}\phantom{10000)}00001\phantom{11}\\10000\overline{)150000}\\\phantom{10000)}\underline{\phantom{}10000\phantom{9}}\\\phantom{10000)9}50000\\\end{array}
Use the 6^{th} digit 0 from dividend 150000
\begin{array}{l}\phantom{10000)}000015\phantom{12}\\10000\overline{)150000}\\\phantom{10000)}\underline{\phantom{}10000\phantom{9}}\\\phantom{10000)9}50000\\\phantom{10000)}\underline{\phantom{9}50000\phantom{}}\\\phantom{10000)999999}0\\\end{array}
Find closest multiple of 10000 to 50000. We see that 5 \times 10000 = 50000 is the nearest. Now subtract 50000 from 50000 to get reminder 0. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }0
Since 0 is less than 10000, stop the division. The reminder is 0. The topmost line 000015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}