\frac { 150 } { 60 } \quad \text { (c) } \frac { 84 } { 98 }
Evaluate
\frac{15c}{7}
Differentiate w.r.t. c
\frac{15}{7} = 2\frac{1}{7} = 2.142857142857143
Share
Copied to clipboard
\frac{5}{2}c\times \frac{84}{98}
Reduce the fraction \frac{150}{60} to lowest terms by extracting and canceling out 30.
\frac{5}{2}c\times \frac{6}{7}
Reduce the fraction \frac{84}{98} to lowest terms by extracting and canceling out 14.
\frac{5\times 6}{2\times 7}c
Multiply \frac{5}{2} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{30}{14}c
Do the multiplications in the fraction \frac{5\times 6}{2\times 7}.
\frac{15}{7}c
Reduce the fraction \frac{30}{14} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{5}{2}c\times \frac{84}{98})
Reduce the fraction \frac{150}{60} to lowest terms by extracting and canceling out 30.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{5}{2}c\times \frac{6}{7})
Reduce the fraction \frac{84}{98} to lowest terms by extracting and canceling out 14.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{5\times 6}{2\times 7}c)
Multiply \frac{5}{2} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{30}{14}c)
Do the multiplications in the fraction \frac{5\times 6}{2\times 7}.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{15}{7}c)
Reduce the fraction \frac{30}{14} to lowest terms by extracting and canceling out 2.
\frac{15}{7}c^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{15}{7}c^{0}
Subtract 1 from 1.
\frac{15}{7}\times 1
For any term t except 0, t^{0}=1.
\frac{15}{7}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}